openvino.runtime.opset5.lstm_sequence#
- openvino.runtime.opset5.lstm_sequence(X: Node | int | float | ndarray, initial_hidden_state: Node | int | float | ndarray, initial_cell_state: Node | int | float | ndarray, sequence_lengths: Node | int | float | ndarray, W: Node | int | float | ndarray, R: Node | int | float | ndarray, B: Node | int | float | ndarray, hidden_size: int, direction: str, activations: List[str] | None = None, activations_alpha: List[float] | None = None, activations_beta: List[float] | None = None, clip: float = 0.0, name: str | None = None) Node#
- Return a node which performs LSTMSequence operation. - Parameters:
- X – The input tensor. Shape: [batch_size, seq_length, input_size]. 
- initial_hidden_state – The hidden state tensor. Shape: [batch_size, num_directions, hidden_size]. 
- initial_cell_state – The cell state tensor. Shape: [batch_size, num_directions, hidden_size]. 
- sequence_lengths – Specifies real sequence lengths for each batch element. Shape: [batch_size]. Integer type. 
- W – Tensor with weights for matrix multiplication operation with input portion of data. Expected format: fico Shape: [num_directions, 4*hidden_size, input_size]. 
- R – The tensor with weights for matrix multiplication operation with hidden state. Expected format: fico Shape: [num_directions, 4*hidden_size, hidden_size]. 
- B – The sum of biases (weight and recurrence). Expected format: fico Shape: [num_directions, 4*hidden_size]. 
- hidden_size – Specifies hidden state size. 
- direction – Specifies if the RNN is forward, reverse, or bidirectional. 
- activations – The list of three activation functions for gates. 
- activations_alpha – The list of alpha parameters for activation functions. 
- activations_beta – The list of beta parameters for activation functions. 
- clip – Specifies bound values [-C, C] for tensor clipping performed before activations. 
- name – An optional name of the output node. 
 
- Returns:
- The new node represents LSTMSequence. Node outputs count: 3.