openvino.runtime.opset14.rnn_cell#
- openvino.runtime.opset14.rnn_cell(X: Node | int | float | ndarray, initial_hidden_state: Node | int | float | ndarray, W: Node | int | float | ndarray, R: Node | int | float | ndarray, B: Node | int | float | ndarray, hidden_size: int, activations: List[str], activations_alpha: List[float], activations_beta: List[float], clip: float = 0.0, name: str | None = None) Node#
- Perform RNNCell operation on tensor from input node. - It follows notation and equations defined as in ONNX standard: onnx/onnx - Note this class represents only single cell and not whole RNN layer. - Parameters:
- X – The input tensor with shape: [batch_size, input_size]. 
- initial_hidden_state – The hidden state tensor at current time step with shape: [batch_size, hidden_size]. 
- W – The weight tensor with shape: [hidden_size, input_size]. 
- R – The recurrence weight tensor with shape: [hidden_size, hidden_size]. 
- B – The sum of biases (weight and recurrence) with shape: [hidden_size]. 
- hidden_size – The number of hidden units for recurrent cell. Specifies hidden state size. 
- activations – The vector of activation functions used inside recurrent cell. 
- activation_alpha – The vector of alpha parameters for activation functions in order respective to activation list. 
- activation_beta – The vector of beta parameters for activation functions in order respective to activation list. 
- clip – The value defining clipping range [-clip, clip] on input of activation functions. 
- name – Optional output node name. 
 
- Returns:
- The new node performing a RNNCell operation on tensor from input node.