openvino.runtime.opset2.group_convolution_backprop_data#
- openvino.runtime.opset2.group_convolution_backprop_data(data: Node | int | float | ndarray, filters: Node | int | float | ndarray, strides: List[int], output_shape: Node | int | float | ndarray | None = None, pads_begin: List[int] | None = None, pads_end: List[int] | None = None, dilations: List[int] | None = None, auto_pad: str = 'EXPLICIT', output_padding: List[int] | None = None, name: str | None = None) Node#
- Perform Group Convolution operation on data from input node. - Parameters:
- data – The node producing input data. 
- filters – The node producing filter data. 
- strides – The distance (in pixels) to slide the filter on the feature map over the axes. 
- output_shape – The node that specifies spatial shape of the output. 
- pads_begin – The number of pixels to add at the beginning along each axis. 
- pads_end – The number of pixels to add at the end along each axis. 
- dilations – The distance in width and height between elements (weights) in the filter. 
- auto_pad – - Describes how to perform padding. Possible values: EXPLICIT: Pad dimensions are explicity specified SAME_LOWER: Pad dimensions computed to match input shape Ceil(num_dims/2) at the beginning and Floor(num_dims/2) at the end - SAME_UPPER: Pad dimensions computed to match input shape
- Floor(num_dims/2) at the beginning and Ceil(num_dims/2) at the end 
 - VALID: No padding 
- output_padding – The additional amount of paddings added per each spatial axis in the output tensor. 
- name – Optional output node name. 
 
- Returns:
- The new node performing a Group Convolution operation on tensor from input node.