pyspark.sql.functions.monthname#
- pyspark.sql.functions.monthname(col)[source]#
Returns the three-letter abbreviated month name from the given date.
New in version 4.0.0.
- Parameters
- col
Column
or column name target date/timestamp column to work on.
- col
- Returns
Column
the three-letter abbreviation of month name for date/timestamp (Jan, Feb, Mar…)
Examples
Example 1: Extract the month name from a string column representing dates
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([('2015-04-08',), ('2024-10-31',)], ['dt']) >>> df.select("*", sf.typeof('dt'), sf.monthname('dt')).show() +----------+----------+-------------+ | dt|typeof(dt)|monthname(dt)| +----------+----------+-------------+ |2015-04-08| string| Apr| |2024-10-31| string| Oct| +----------+----------+-------------+
Example 2: Extract the month name from a string column representing timestamp
>>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([('2015-04-08 13:08:15',), ('2024-10-31 10:09:16',)], ['ts']) >>> df.select("*", sf.typeof('ts'), sf.monthname('ts')).show() +-------------------+----------+-------------+ | ts|typeof(ts)|monthname(ts)| +-------------------+----------+-------------+ |2015-04-08 13:08:15| string| Apr| |2024-10-31 10:09:16| string| Oct| +-------------------+----------+-------------+
Example 3: Extract the month name from a date column
>>> import datetime >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([ ... (datetime.date(2015, 4, 8),), ... (datetime.date(2024, 10, 31),)], ['dt']) >>> df.select("*", sf.typeof('dt'), sf.monthname('dt')).show() +----------+----------+-------------+ | dt|typeof(dt)|monthname(dt)| +----------+----------+-------------+ |2015-04-08| date| Apr| |2024-10-31| date| Oct| +----------+----------+-------------+
Example 4: Extract the month name from a timestamp column
>>> import datetime >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([ ... (datetime.datetime(2015, 4, 8, 13, 8, 15),), ... (datetime.datetime(2024, 10, 31, 10, 9, 16),)], ['ts']) >>> df.select("*", sf.typeof('ts'), sf.monthname('ts')).show() +-------------------+----------+-------------+ | ts|typeof(ts)|monthname(ts)| +-------------------+----------+-------------+ |2015-04-08 13:08:15| timestamp| Apr| |2024-10-31 10:09:16| timestamp| Oct| +-------------------+----------+-------------+