pyspark.pandas.DataFrame.plot.line#
- plot.line(x=None, y=None, **kwargs)#
Plot DataFrame/Series as lines.
This function is useful to plot lines using DataFrame’s values as coordinates.
- Parameters
- xint or str, optional
Columns to use for the horizontal axis. Either the ___location or the label of the columns to be used. By default, it will use the DataFrame indices.
- yint, str, or list of them, optional
The values to be plotted. Either the ___location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns.
- **kwds
Keyword arguments to pass on to
Series.plot()
orDataFrame.plot()
.
- Returns
plotly.graph_objs.Figure
Return an custom object when
backend!=plotly
. Return an ndarray whensubplots=True
(matplotlib-only).
See also
plotly.express.line
Plot y versus x as lines and/or markers (plotly).
matplotlib.pyplot.plot
Plot y versus x as lines and/or markers (matplotlib).
Examples
Basic plot.
For Series:
>>> s = ps.Series([1, 3, 2]) >>> s.plot.line()
For DataFrame:
The following example shows the populations for some animals over the years.
>>> df = ps.DataFrame({'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900]}, ... index=[1990, 1997, 2003, 2009, 2014]) >>> df.plot.line()
The following example shows the relationship between both populations.
>>> df = ps.DataFrame({'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900]}, ... index=[1990, 1997, 2003, 2009, 2014]) >>> df.plot.line(x='pig', y='horse')