MLflow 客户端 API 提供对跟踪生命周期管理的直接精细控制。 尽管 高级 API 处理大多数用例很优雅,但客户端 API 对于需要显式控制跟踪创建、自定义跟踪 ID 或与现有可观测性系统的集成的高级方案至关重要。
警告
开始之前:建议仅在高级 API 不满足要求时使用客户端 API:
- 无自动父子关系检测
- 需要手动处理异常
- 与自动跟踪集成不兼容
- 完全控制跟踪生命周期
- 自定义追踪 ID 管理
- 与现有系统的集成
核心概念
跟踪生命周期过程
每个踪迹都遵循必须显式管理的严格生命周期:
graph LR
A[Start Trace] --> B[Start Span 1]
B --> C[Start Span 2]
C --> D[End Span 2]
D --> E[End Span 1]
E --> F[End Trace]
重要
黄金规则:每个 start_trace
或 start_span
呼叫都必须有相应的 end_trace
或 end_span
调用。 未能关闭区段将导致跟踪不完整。
密钥标识符
了解这些标识符对于客户端 API 使用情况至关重要:
标识符 | DESCRIPTION | 用法 |
---|---|---|
request_id |
唯一跟踪标识符 | 链接跟踪中的所有区段 |
span_id |
唯一范围标识符 | 确定特定范围直至结束 |
parent_id |
父跨度 ID | 创建跨度层次结构 |
入门指南
初始化客户端
from mlflow import MlflowClient
# Initialize client with default tracking URI
client = MlflowClient()
# Or specify a custom tracking URI
client = MlflowClient(tracking_uri="databricks")
启动跟踪
与高级 API 不同,您必须在添加跨度之前显式启动跟踪。
# Start a new trace - this creates the root span
root_span = client.start_trace(
name="my_application_flow",
inputs={"user_id": "123", "action": "generate_report"},
attributes={"environment": "production", "version": "1.0.0"}
)
# Extract the request_id for subsequent operations
request_id = root_span.request_id
print(f"Started trace with ID: {request_id}")
添加子跨度
创建范围层次结构来表示应用程序的工作流:
# Create a child span for data retrieval
data_span = client.start_span(
name="fetch_user_data",
request_id=request_id, # Links to the trace
parent_id=root_span.span_id, # Creates parent-child relationship
inputs={"user_id": "123"},
attributes={"database": "users_db", "query_type": "select"}
)
# Create a sibling span for processing
process_span = client.start_span(
name="process_data",
request_id=request_id,
parent_id=root_span.span_id, # Same parent as data_span
inputs={"data_size": "1024KB"},
attributes={"processor": "gpu", "batch_size": 32}
)
终止范围
以相反顺序创建结束范围(LIFO - 最后一次传入,先出):
# End the data retrieval span
client.end_span(
request_id=data_span.request_id,
span_id=data_span.span_id,
outputs={"record_count": 42, "cache_hit": True},
attributes={"duration_ms": 150}
)
# End the processing span
client.end_span(
request_id=process_span.request_id,
span_id=process_span.span_id,
outputs={"processed_records": 42, "errors": 0},
status="OK"
)
结束跟踪
通过结束根跨度来完成追踪:
# End the root span (completes the trace)
client.end_trace(
request_id=request_id,
outputs={"report_url": "https://example.com/report/123"},
attributes={"total_duration_ms": 1250, "status": "success"}
)
实例
示例 1:错误处理
正确的错误处理可确保即使发生异常,跟踪也已完成:
def traced_operation():
client = MlflowClient()
root_span = None
try:
# Start trace
root_span = client.start_trace("risky_operation")
# Start child span
child_span = client.start_span(
name="database_query",
request_id=root_span.request_id,
parent_id=root_span.span_id
)
try:
# Risky operation
result = perform_database_query()
# End child span on success
client.end_span(
request_id=child_span.request_id,
span_id=child_span.span_id,
outputs={"result": result},
status="OK"
)
except Exception as e:
# End child span on error
client.end_span(
request_id=child_span.request_id,
span_id=child_span.span_id,
status="ERROR",
attributes={"error": str(e)}
)
raise
except Exception as e:
# Log error to trace
if root_span:
client.end_trace(
request_id=root_span.request_id,
status="ERROR",
attributes={"error_type": type(e).__name__, "error_message": str(e)}
)
raise
else:
# End trace on success
client.end_trace(
request_id=root_span.request_id,
outputs={"status": "completed"},
status="OK"
)
示例 2:自定义跟踪管理
实现自定义跟踪 ID 生成和管理,以便与现有系统集成:
import uuid
from datetime import datetime
class CustomTraceManager:
"""Custom trace manager with business-specific trace IDs"""
def __init__(self):
self.client = MlflowClient()
self.active_traces = {}
def generate_trace_id(self, user_id: str, operation: str) -> str:
"""Generate custom trace ID based on business logic"""
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
return f"{user_id}_{operation}_{timestamp}_{uuid.uuid4().hex[:8]}"
def start_custom_trace(self, user_id: str, operation: str, **kwargs):
"""Start trace with custom ID format"""
trace_name = self.generate_trace_id(user_id, operation)
root_span = self.client.start_trace(
name=trace_name,
attributes={
"user_id": user_id,
"operation": operation,
"custom_trace_id": trace_name,
**kwargs
}
)
self.active_traces[trace_name] = root_span
return root_span
def get_active_trace(self, trace_name: str):
"""Retrieve active trace by custom name"""
return self.active_traces.get(trace_name)
# Usage
manager = CustomTraceManager()
trace = manager.start_custom_trace(
user_id="user123",
operation="report_generation",
report_type="quarterly"
)
示例 3:使用嵌套跨度进行批处理
跟踪包含多个嵌套级别的复杂工作流:
def batch_processor(items):
client = MlflowClient()
# Start main trace
root = client.start_trace(
name="batch_processing",
inputs={"batch_size": len(items)}
)
results = []
# Process each item
for i, item in enumerate(items):
# Create span for each item
item_span = client.start_span(
name=f"process_item_{i}",
request_id=root.request_id,
parent_id=root.span_id,
inputs={"item_id": item["id"]}
)
try:
# Validation span
validation_span = client.start_span(
name="validate",
request_id=root.request_id,
parent_id=item_span.span_id
)
is_valid = validate_item(item)
client.end_span(
request_id=validation_span.request_id,
span_id=validation_span.span_id,
outputs={"is_valid": is_valid}
)
if is_valid:
# Processing span
process_span = client.start_span(
name="transform",
request_id=root.request_id,
parent_id=item_span.span_id
)
result = transform_item(item)
results.append(result)
client.end_span(
request_id=process_span.request_id,
span_id=process_span.span_id,
outputs={"transformed": result}
)
# End item span
client.end_span(
request_id=item_span.request_id,
span_id=item_span.span_id,
status="OK"
)
except Exception as e:
# Handle errors gracefully
client.end_span(
request_id=item_span.request_id,
span_id=item_span.span_id,
status="ERROR",
attributes={"error": str(e)}
)
# End main trace
client.end_trace(
request_id=root.request_id,
outputs={
"processed_count": len(results),
"success_rate": len(results) / len(items)
}
)
return results
最佳做法
1. 将上下文管理器用于安全
创建自定义上下文管理器,以确保始终关闭范围:
from contextlib import contextmanager
@contextmanager
def traced_span(client, name, request_id, parent_id=None, **kwargs):
"""Context manager for safe span management"""
span = client.start_span(
name=name,
request_id=request_id,
parent_id=parent_id,
**kwargs
)
try:
yield span
except Exception as e:
client.end_span(
request_id=span.request_id,
span_id=span.span_id,
status="ERROR",
attributes={"error": str(e)}
)
raise
else:
client.end_span(
request_id=span.request_id,
span_id=span.span_id,
status="OK"
)
# Usage
with traced_span(client, "my_operation", request_id, parent_id) as span:
# Your code here
result = perform_operation()
2. 实现跟踪状态管理
管理复杂应用程序的跟踪状态:
class TraceStateManager:
"""Manage trace state across application components"""
def __init__(self):
self.client = MlflowClient()
self._trace_stack = []
@property
def current_trace(self):
"""Get current active trace"""
return self._trace_stack[-1] if self._trace_stack else None
def push_trace(self, name: str, **kwargs):
"""Start a new trace and push to stack"""
if self.current_trace:
# Create child span if trace exists
span = self.client.start_span(
name=name,
request_id=self.current_trace.request_id,
parent_id=self.current_trace.span_id,
**kwargs
)
else:
# Create new trace
span = self.client.start_trace(name=name, **kwargs)
self._trace_stack.append(span)
return span
def pop_trace(self, **kwargs):
"""End current trace and pop from stack"""
if not self._trace_stack:
return
span = self._trace_stack.pop()
if self._trace_stack:
# End child span
self.client.end_span(
request_id=span.request_id,
span_id=span.span_id,
**kwargs
)
else:
# End root trace
self.client.end_trace(
request_id=span.request_id,
**kwargs
)
3. 添加有意义的属性
使用有助于调试的上下文来丰富跟踪数据:
# Good: Specific, actionable attributes
client.start_span(
name="llm_call",
request_id=request_id,
parent_id=parent_id,
attributes={
"model": "gpt-4",
"temperature": 0.7,
"max_tokens": 1000,
"prompt_template": "rag_v2",
"user_tier": "premium"
}
)
# Bad: Generic, unhelpful attributes
client.start_span(
name="process",
request_id=request_id,
parent_id=parent_id,
attributes={"step": 1, "data": "some data"}
)
常见陷阱
警告
避免以下常见错误:
- 忘记结束段落——始终使用 try/finally 或上下文管理器
- 父子关系不正确 - 仔细检查区段 ID
- 混合高级和低级别 API - 它们不会互作
- 硬编码跟踪 ID - 始终生成一个唯一 ID
- 忽略线程安全性 - 默认情况下客户端 API 不是线程安全的
何时使用客户端 API
将客户端 API 用于:
- 自定义跟踪 ID 生成方案
- 与现有跟踪系统的集成
- 复杂的跟踪生命周期管理
- 高级跨度层次结构
- 自定义跟踪状态管理
避免使用客户端 API 进行以下操作:
- 简单函数跟踪(使用
@mlflow.trace
) - 本地 Python 应用程序(使用上下文管理器)
- 快速原型制作(使用高级 API)
- 与自动跟踪集成
后续步骤
继续您的旅程,并参考这些推荐的行动和教程。
- 调试并观察应用 - 分析使用客户端 API 创建的跟踪
- 通过 SDK 查询跟踪 - 以编程方式访问跟踪数据
- High-Level API - 大多数用例的更简单替代方法
参考指南
浏览本指南中提到的概念和功能的详细文档。