了解如何创建可搜索的跟踪、有效地查询和分析结果,以便深入了解 GenAI 应用程序的行为。
快速参考
基本搜索语法
# Search by status
mlflow.search_traces("attributes.status = 'OK'")
mlflow.search_traces("attributes.status = 'ERROR'")
# Search by time (milliseconds since epoch)
mlflow.search_traces("attributes.timestamp_ms > 1749006880539")
mlflow.search_traces("attributes.execution_time_ms > 5000")
# Search by tags
mlflow.search_traces("tags.environment = 'production'")
mlflow.search_traces("tags.`mlflow.traceName` = 'my_function'")
# Search by metadata
mlflow.search_traces("metadata.`mlflow.user` = 'alice@company.com'")
# Combined filters (AND only)
mlflow.search_traces(
"attributes.status = 'OK' AND tags.environment = 'production'"
)
密钥规则
-
始终使用前缀:
attributes.
、或tags.
metadata.
-
如果标记或属性名称中有点,则使用反引号:
tags.`mlflow.traceName`
-
仅单引号:
'value'
而不是"value"
-
用于时间的毫秒:
1749006880539
而非日期 - 仅限 AND:无 OR 支持
可搜索字段
领域 | 路径 | 运营商 |
---|---|---|
状态 | attributes.status |
= 、!= |
时间戳 | attributes.timestamp_ms |
= 、< 、<= 、> 、>= |
持续时间 | attributes.execution_time_ms |
= 、< 、<= 、> 、>= |
标记 | tags.* |
= 、!= |
元数据 | metadata.* |
= 、!= |
端到端示例
注意事项: 先决条件
安装 MLflow 和所需包
pip install --upgrade "mlflow[databricks]>=3.1.0" openai "databricks-connect>=16.1"
请按照 设置环境快速指南 创建 MLflow 试验。 :::
创建示例跟踪以演示搜索功能:
import time
import mlflow
# Define methods to be traced
@mlflow.trace()
def morning_greeting(name: str):
time.sleep(1)
# Add tag and metadata for better categorization
mlflow.update_current_trace(
tags={"person": name},
)
return f"Good morning {name}."
@mlflow.trace()
def evening_greeting(name: str):
time.sleep(1)
# Add tag with different values for comparison
mlflow.update_current_trace(
tags={"person": name},
)
return f"Good evening {name}."
@mlflow.trace()
def goodbye():
# Add tag even for functions that might fail
mlflow.update_current_trace(
tags={"greeting_type": "goodbye"},
)
raise Exception("Cannot say goodbye")
# Execute the methods
morning_greeting("Tom")
# Get the timestamp in milliseconds
morning_time = int(time.time() * 1000)
evening_greeting("Mary")
# Execute goodbye, catching the exception
try:
goodbye()
except Exception as e:
print(f"Caught expected exception: {e}")
pass
上面的代码创建以下轨迹:
使用正确的字段前缀搜索这些痕迹:
# Search successful traces
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
)
print(traces)
# 2 results
# Search failed traces
traces = mlflow.search_traces(
filter_string="attributes.status = 'ERROR'",
)
print(traces)
# 1 result
# Search all traces in experiment
traces = mlflow.search_traces()
print(traces)
# 3 results
# Search by single tag
traces = mlflow.search_traces(filter_string="tags.person = 'Tom'")
print(traces)
# 1 result
# Complex search combining tags and status
traces = mlflow.search_traces(
filter_string="tags.person = 'Tom' AND attributes.status = 'OK'"
)
print(traces)
# 1 result
# Search by timestamp
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {morning_time}")
print(traces)
# 1 result
API 参考
搜索 API
使用mlflow.search_traces()
在实验中搜寻和分析痕迹。
mlflow.search_traces(
experiment_ids: Optional[List[str]] = None, # Uses active experiment if not specified
filter_string: Optional[str] = None,
max_results: Optional[int] = None,
order_by: Optional[List[str]] = None,
extract_fields: Optional[List[str]] = None, # DataFrame column extraction (pandas only)
run_id: Optional[str] = None, # Filter traces by run ID
return_type: Optional[Literal["pandas", "list"]] = None, # Return type (default: pandas if available)
model_id: Optional[str] = None, # Search traces by model ID
sql_warehouse_id: Optional[str] = None # Databricks SQL warehouse ID
) -> Union[pandas.DataFrame, List[Trace]]
参数详细信息:
参数 | DESCRIPTION |
---|---|
experiment_ids |
用于限定搜索范围的试验 ID 的列表。 如果未提供,系统将在当前活跃实验中进行搜索。 |
filter_string |
搜索过滤器字符串。 |
max_results |
所需的最大追踪数。 如果为 None,将返回与搜索表达式匹配的所有跟踪。 |
order_by |
这是 order_by 子句的列表。 |
extract_fields |
使用格式 "span_name.[inputs\|outputs].field_name" 或 "span_name.[inputs\|outputs]" .. 指定要从跟踪中提取的字段。 |
run_id |
用于限定搜索范围的运行 ID。 在活动运行下创建跟踪时,它将与运行相关联,你可以根据运行 ID 进行筛选以检索跟踪。 有关如何按运行 ID 筛选跟踪的示例,请参阅以下示例。 |
return_type |
返回值的类型。 支持以下返回类型。 如果安装了 pandas 库,则默认返回类型为“pandas”。 否则,默认返回类型为“list”: • "pandas" :返回一个 Pandas 数据帧,其中包含有关跟踪的信息,其中每一行表示单个跟踪,每列表示跟踪的字段,例如trace_id、跨度等。• "list" : 返回 :p y:class:Trace <mlflow.entities.Trace> 对象的列表。 |
model_id |
如果指定,则搜索与给定模型 ID 关联的跟踪。 |
注释
MLflow 还提供 MlflowClient.search_traces()
. 但是,我们建议使用 mlflow.search_traces()
- 除了分页支持之外,它还提供了一组功能,具有更方便的默认值和其他功能,如 DataFrame 输出和字段提取。
可搜索字段参考
重要
有关这些字段的完整参考,请参阅 跟踪数据模型。
字段类型 | 搜索路径 | 运营商 | 价值观 | 注释 |
---|---|---|---|---|
元数据 | metadata.* |
= 、!= |
请参阅下面的详细信息 | 仅限字符串相等 |
标签 | tags.* |
= 、!= |
请参阅下面的详细信息 | 仅限字符串相等 |
地位 | attributes.status |
= 、!= |
OK 、ERROR 、IN_PROGRESS |
仅字符串相等性 |
名称 | attributes.name |
= 、!= |
追踪名称 | 仅限字符串相等 |
时间戳 | attributes.timestamp_ms |
= 、< 、<= 、> 、>= |
创建时间(自纪元以来的 ms) | 数值比较 |
执行时间 | attributes.execution_time_ms |
= 、< 、<= 、> 、>= |
持续时间(毫秒) | 数值比较 |
元数据详细信息
以下元数据字段可用于筛选:
-
metadata.mlflow.traceInputs
:请求内容 -
metadata.mlflow.traceOutputs
:响应内容 -
metadata.mlflow.sourceRun
:源运行 ID -
metadata.mlflow.modelId
:模型 ID -
metadata.mlflow.trace.sizeBytes
:跟踪大小(以字节为单位) -
metadata.mlflow.trace.tokenUsage
:聚合令牌使用情况信息(JSON 字符串) -
metadata.mlflow.trace.user
:应用程序请求的用户 ID/名称 -
metadata.mlflow.trace.session
:应用程序请求的会话 ID
标记详细信息
除了用户定义的标记外,还提供以下系统定义的标记:
-
mlflow.traceName
:跟踪的名称 -
eval.requestId
:评估请求 ID,设置者mlflow.genai.evaluate()
筛选语法规则
-
所需的表前缀:始终使用
attributes.
、tags.
或metadata.
-
点号的反引号:包含点号的字段需要反引号:
tags.`mlflow.traceName`
-
仅单引号:字符串值必须使用单引号:
'value'
- 区分大小写:所有字段名称和值都区分大小写
- 仅限 AND:不支持 OR 运算符
按语法排序
# Single field ordering
order_by=["attributes.timestamp_ms DESC"]
order_by=["attributes.execution_time_ms ASC"]
# Multiple field ordering (applied in sequence)
order_by=[
"attributes.timestamp_ms DESC",
"attributes.execution_time_ms ASC"
]
# Supported fields for ordering
# - attributes.timestamp_ms (and aliases)
# - attributes.execution_time_ms (and aliases)
# - attributes.status
# - attributes.name
常见模式
# Status filtering
"attributes.status = 'OK'"
"attributes.status = 'ERROR'"
# Time-based queries
"attributes.timestamp_ms > 1749006880539"
"attributes.execution_time_ms > 5000"
# Tag searches
"tags.user_id = 'U001'"
"tags.`mlflow.traceName` = 'my_function'"
# Metadata queries
"metadata.`mlflow.user` = 'alice@company.com'"
"metadata.`mlflow.traceOutputs` != ''"
# Combined filters
"attributes.status = 'OK' AND tags.environment = 'production'"
"attributes.timestamp_ms > 1749006880539 AND attributes.execution_time_ms > 1000"
常见错误
❌ 不對 | ✅ 正确 | 問题 |
---|---|---|
status = 'OK' |
attributes.status = 'OK' |
缺少前缀 |
mlflow.user = 'alice' |
metadata.`mlflow.user` = 'alice' |
缺少前缀和反引号 |
timestamp > '2024-01-01' |
attributes.timestamp > 1704067200000 |
使用毫秒而不是字符串 |
tags.env = "prod" |
tags.env = 'prod' |
使用单引号 |
status = 'OK' OR status = 'ERROR' |
使用单独的查询 | 或不受支持 |
详细的搜索示例
按运行 ID 搜索
# Find all traces associated with a specific MLflow run
with mlflow.start_run() as run:
# Your traced code here
traced_result = my_traced_function()
# Search for traces from this run
run_traces = mlflow.search_traces(
run_id=run.info.run_id,
return_type="list" # Get list of Trace objects
)
控制返回类型
# Get results as pandas DataFrame (default if pandas is installed)
traces_df = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
return_type="pandas"
)
# Get results as list of Trace objects
traces_list = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
return_type="list"
)
# Access trace details from list
for trace in traces_list:
print(f"Trace ID: {trace.info.trace_id}")
print(f"Status: {trace.info.state}")
print(f"Duration: {trace.info.execution_duration}")
按模型 ID 搜索
# Find traces associated with a specific MLflow model
model_traces = mlflow.search_traces(
model_id="my-model-123",
filter_string="attributes.status = 'OK'"
)
# Analyze model performance
print(f"Found {len(model_traces)} successful traces for model")
print(f"Average latency: {model_traces['execution_time_ms'].mean():.2f}ms")
按状态搜索
# Find successful traces
traces = mlflow.search_traces(filter_string="attributes.status = 'OK'")
# Find failed traces
traces = mlflow.search_traces(filter_string="attributes.status = 'ERROR'")
# Find in-progress traces
traces = mlflow.search_traces(filter_string="attributes.status = 'IN_PROGRESS'")
# Exclude errors
traces = mlflow.search_traces(filter_string="attributes.status != 'ERROR'")
按跟踪名称搜索
# Find traces with specific name (rarely used - legacy field)
traces = mlflow.search_traces(filter_string="attributes.name = 'foo'")
# Find traces excluding a specific name
traces = mlflow.search_traces(filter_string="attributes.name != 'test_trace'")
# Note: Most users should use tags.`mlflow.traceName` instead
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_request'"
)
按时间戳搜索
import time
from datetime import datetime
# Current time in milliseconds
current_time_ms = int(time.time() * 1000)
# Last 5 minutes
five_minutes_ago = current_time_ms - (5 * 60 * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.timestamp_ms > {five_minutes_ago}"
)
# Specific date range
start_date = int(datetime(2024, 1, 1).timestamp() * 1000)
end_date = int(datetime(2024, 1, 31).timestamp() * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.timestamp_ms > {start_date} AND attributes.timestamp_ms < {end_date}"
)
# Using timestamp aliases
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {five_minutes_ago}")
按执行时间搜索
# Find slow traces (>5 seconds)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms > 5000")
# Find fast traces (<100ms)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms < 100")
# Performance range
traces = mlflow.search_traces(
filter_string="attributes.execution_time_ms > 100 AND attributes.execution_time_ms < 1000"
)
# Using execution time aliases
traces = mlflow.search_traces(filter_string="attributes.latency > 1000")
按标记搜索
# Custom tags (set via mlflow.update_current_trace)
traces = mlflow.search_traces(filter_string="tags.customer_id = 'C001'")
traces = mlflow.search_traces(filter_string="tags.environment = 'production'")
traces = mlflow.search_traces(filter_string="tags.version = 'v2.1.0'")
# MLflow system tags (require backticks)
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_chat_request'"
)
traces = mlflow.search_traces(
filter_string="tags.`mlflow.artifactLocation` != ''"
)
按元数据搜索
# Search by response content (exact match)
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.traceOutputs` = 'exact response text'"
)
# Find traces with any output
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.traceOutputs` != ''"
)
# Search by user
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.user` = 'alice@company.com'"
)
# Search by source file
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.source.name` = 'app.py'"
)
# Search by git information
traces = mlflow.search_traces(
filter_string="metadata.`mlflow.source.git.branch` = 'main'"
)
使用 AND 的复杂筛选器
# Recent successful production traces
current_time_ms = int(time.time() * 1000)
one_hour_ago = current_time_ms - (60 * 60 * 1000)
traces = mlflow.search_traces(
filter_string=f"attributes.status = 'OK' AND "
f"attributes.timestamp_ms > {one_hour_ago} AND "
f"tags.environment = 'production'"
)
# Fast traces from specific user
traces = mlflow.search_traces(
filter_string="attributes.execution_time_ms < 100 AND "
"metadata.`mlflow.user` = 'alice@company.com'"
)
# Specific function with performance threshold
traces = mlflow.search_traces(
filter_string="tags.`mlflow.traceName` = 'process_payment' AND "
"attributes.execution_time_ms > 1000"
)
对结果排序
# Most recent first
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
order_by=["attributes.timestamp_ms DESC"]
)
# Fastest first
traces = mlflow.search_traces(
order_by=["attributes.execution_time_ms ASC"]
)
# Multiple sort criteria
traces = mlflow.search_traces(
filter_string="attributes.status = 'OK'",
order_by=[
"attributes.timestamp_ms DESC",
"attributes.execution_time_ms ASC"
]
)
数据帧操作
返回 mlflow.search_traces
的数据帧包含以下列:
traces_df = mlflow.search_traces()
# Default columns
print(traces_df.columns)
# ['request_id', 'trace', 'timestamp_ms', 'status', 'execution_time_ms',
# 'request', 'response', 'request_metadata', 'spans', 'tags']
提取跨度字段
# Extract specific span fields into DataFrame columns
traces = mlflow.search_traces(
extract_fields=[
"process_request.inputs.customer_id",
"process_request.outputs",
"validate_input.inputs",
"generate_response.outputs.message"
]
)
# Use extracted fields for evaluation dataset
eval_data = traces.rename(columns={
"process_request.inputs.customer_id": "customer",
"generate_response.outputs.message": "ground_truth"
})
生成动态查询
def build_trace_filter(status=None, user=None, min_duration=None,
max_duration=None, tags=None, after_timestamp=None):
"""Build dynamic filter string from parameters"""
conditions = []
if status:
conditions.append(f"attributes.status = '{status}'")
if user:
conditions.append(f"metadata.`mlflow.user` = '{user}'")
if min_duration:
conditions.append(f"attributes.execution_time_ms > {min_duration}")
if max_duration:
conditions.append(f"attributes.execution_time_ms < {max_duration}")
if after_timestamp:
conditions.append(f"attributes.timestamp_ms > {after_timestamp}")
if tags:
for key, value in tags.items():
# Handle dotted tag names
if '.' in key:
conditions.append(f"tags.`{key}` = '{value}'")
else:
conditions.append(f"tags.{key} = '{value}'")
return " AND ".join(conditions) if conditions else None
# Usage
filter_string = build_trace_filter(
status="OK",
user="alice@company.com",
min_duration=100,
tags={"environment": "production", "mlflow.traceName": "process_order"}
)
traces = mlflow.search_traces(filter_string=filter_string)
实用案例参考
错误监控
监视和分析生产环境中的错误:
import mlflow
import time
import pandas as pd
def monitor_errors(experiment_name: str, hours: int = 1):
"""Monitor errors in the last N hours."""
# Calculate time window
current_time_ms = int(time.time() * 1000)
cutoff_time_ms = current_time_ms - (hours * 60 * 60 * 1000)
# Find all errors
failed_traces = mlflow.search_traces(
filter_string=f"attributes.status = 'ERROR' AND "
f"attributes.timestamp_ms > {cutoff_time_ms}",
order_by=["attributes.timestamp_ms DESC"]
)
if len(failed_traces) == 0:
print(f"No errors found in the last {hours} hour(s)")
return
# Analyze error patterns
print(f"Found {len(failed_traces)} errors in the last {hours} hour(s)\n")
# Group by function name
error_by_function = failed_traces.groupby('tags.mlflow.traceName').size()
print("Errors by function:")
print(error_by_function.to_string())
# Show recent error samples
print("\nRecent error samples:")
for _, trace in failed_traces.head(5).iterrows():
print(f"- {trace['request_preview'][:60]}...")
print(f" Function: {trace.get('tags.mlflow.traceName', 'unknown')}")
print(f" Time: {pd.to_datetime(trace['timestamp_ms'], unit='ms')}")
print()
return failed_traces
性能分析
分析性能特征并确定瓶颈:
def profile_performance(function_name: str = None, percentiles: list = [50, 95, 99]):
"""Profile performance metrics for traces."""
# Build filter
filter_parts = []
if function_name:
filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")
filter_string = " AND ".join(filter_parts) if filter_parts else None
# Get traces
traces = mlflow.search_traces(filter_string=filter_string)
if len(traces) == 0:
print("No traces found")
return
# Calculate percentiles
perf_stats = traces['execution_time_ms'].describe(percentiles=[p/100 for p in percentiles])
print(f"Performance Analysis ({len(traces)} traces)")
print("=" * 40)
for p in percentiles:
print(f"P{p}: {perf_stats[f'{p}%']:.1f}ms")
print(f"Mean: {perf_stats['mean']:.1f}ms")
print(f"Max: {perf_stats['max']:.1f}ms")
# Find outliers (>P99)
if 99 in percentiles:
p99_threshold = perf_stats['99%']
outliers = traces[traces['execution_time_ms'] > p99_threshold]
if len(outliers) > 0:
print(f"\nOutliers (>{p99_threshold:.0f}ms): {len(outliers)} traces")
for _, trace in outliers.head(3).iterrows():
print(f"- {trace['execution_time_ms']:.0f}ms: {trace['request_preview'][:50]}...")
return traces
用户活动分析
跟踪和分析用户行为模式:
def analyze_user_activity(user_id: str, days: int = 7):
"""Analyze activity patterns for a specific user."""
cutoff_ms = int((time.time() - days * 86400) * 1000)
traces = mlflow.search_traces(
filter_string=f"metadata.`mlflow.user` = '{user_id}' AND "
f"attributes.timestamp_ms > {cutoff_ms}",
order_by=["attributes.timestamp_ms DESC"]
)
if len(traces) == 0:
print(f"No activity found for user {user_id}")
return
print(f"User {user_id} Activity Report ({days} days)")
print("=" * 50)
print(f"Total requests: {len(traces)}")
# Daily activity
traces['date'] = pd.to_datetime(traces['timestamp_ms'], unit='ms').dt.date
daily_activity = traces.groupby('date').size()
print(f"\nDaily activity:")
print(daily_activity.to_string())
# Query categories
if 'tags.query_category' in traces.columns:
categories = traces['tags.query_category'].value_counts()
print(f"\nQuery categories:")
print(categories.to_string())
# Performance stats
print(f"\nPerformance:")
print(f"Average response time: {traces['execution_time_ms'].mean():.1f}ms")
print(f"Error rate: {(traces['status'] == 'ERROR').mean() * 100:.1f}%")
return traces
最佳做法
1.设计一致的标记策略
为组织创建标记分类:
class TraceTagging:
"""Standardized tagging strategy for traces."""
# Required tags for all traces
REQUIRED_TAGS = ["environment", "version", "service_name"]
# Category mappings
CATEGORIES = {
"user_management": ["login", "logout", "profile_update"],
"content_generation": ["summarize", "translate", "rewrite"],
"data_retrieval": ["search", "fetch", "query"]
}
@staticmethod
def tag_trace(operation: str, **kwargs):
"""Apply standardized tags to current trace."""
tags = {
"operation": operation,
"timestamp": datetime.now().isoformat(),
"service_name": "genai-platform"
}
# Add category based on operation
for category, operations in TraceTagging.CATEGORIES.items():
if operation in operations:
tags["category"] = category
break
# Add custom tags
tags.update(kwargs)
# Validate required tags
for required in TraceTagging.REQUIRED_TAGS:
if required not in tags:
tags[required] = "unknown"
mlflow.update_current_trace(tags=tags)
return tags
2. 生成可重用的搜索实用工具
class TraceSearcher:
"""Reusable trace search utilities."""
def __init__(self, experiment_ids: list = None):
self.experiment_ids = experiment_ids
def recent_errors(self, hours: int = 1) -> pd.DataFrame:
"""Get recent error traces."""
cutoff = int((time.time() - hours * 3600) * 1000)
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"attributes.status = 'ERROR' AND "
f"attributes.timestamp_ms > {cutoff}",
order_by=["attributes.timestamp_ms DESC"]
)
def slow_operations(self, threshold_ms: int = 5000) -> pd.DataFrame:
"""Find operations slower than threshold."""
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"attributes.execution_time_ms > {threshold_ms}",
order_by=["attributes.execution_time_ms DESC"]
)
def by_user(self, user_id: str, days: int = 7) -> pd.DataFrame:
"""Get traces for a specific user."""
cutoff = int((time.time() - days * 86400) * 1000)
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=f"tags.user_id = '{user_id}' AND "
f"attributes.timestamp_ms > {cutoff}",
order_by=["attributes.timestamp_ms DESC"]
)
def by_category(self, category: str, status: str = None) -> pd.DataFrame:
"""Get traces by category with optional status filter."""
filters = [f"tags.category = '{category}'"]
if status:
filters.append(f"attributes.status = '{status}'")
return mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=" AND ".join(filters)
)
def performance_report(self, function_name: str = None) -> dict:
"""Generate performance report."""
filter_parts = []
if function_name:
filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")
filter_string = " AND ".join(filter_parts) if filter_parts else None
traces = mlflow.search_traces(
experiment_ids=self.experiment_ids,
filter_string=filter_string
)
if len(traces) == 0:
return {"error": "No traces found"}
return {
"total_traces": len(traces),
"error_rate": (traces['status'] == 'ERROR').mean(),
"avg_duration_ms": traces['execution_time_ms'].mean(),
"p50_duration_ms": traces['execution_time_ms'].quantile(0.5),
"p95_duration_ms": traces['execution_time_ms'].quantile(0.95),
"p99_duration_ms": traces['execution_time_ms'].quantile(0.99)
}
# Usage example
searcher = TraceSearcher()
errors = searcher.recent_errors(hours=24)
slow_ops = searcher.slow_operations(threshold_ms=10000)
user_traces = searcher.by_user("U001", days=30)
report = searcher.performance_report("process_request")