多引擎 n 体重力模拟

D3D12nBodyGravity 示例演示如何异步执行计算工作。 该示例使用计算命令队列启动多个线程,并在执行 n 体重力模拟的 GPU 上计划计算工作。 每个线程对两个充满位置和速度数据的缓冲区进行作。 每次迭代时,计算着色器都会从一个缓冲区读取当前位置和速度数据,并将下一次迭代写入另一个缓冲区。 迭代完成后,计算着色器会交换哪个缓冲区是用于读取位置/速度数据的 SRV,这是 UAV 通过更改每个缓冲区上的资源状态来写入位置/速度更新。

创建根签名

首先在 LoadAssets 方法中创建图形和计算根签名。 这两个根签名都有根常量缓冲区视图(CBV)和着色器资源视图(SRV)描述符表。 计算根签名还具有无序访问视图(UAV)描述符表。

 // Create the root signatures.
       {
              CD3DX12_DESCRIPTOR_RANGE ranges[2];
              ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
              ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

              CD3DX12_ROOT_PARAMETER rootParameters[RootParametersCount];
              rootParameters[RootParameterCB].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_ALL);
              rootParameters[RootParameterSRV].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);
              rootParameters[RootParameterUAV].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);

              // The rendering pipeline does not need the UAV parameter.
              CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
              rootSignatureDesc.Init(_countof(rootParameters) - 1, rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

              ComPtr<ID3DBlob> signature;
              ComPtr<ID3DBlob> error;
              ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
              ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

              // Create compute signature. Must change visibility for the SRV.
              rootParameters[RootParameterSRV].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

              CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc(_countof(rootParameters), rootParameters, 0, nullptr);
              ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));

              ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
       }
呼叫流 参数
CD3DX12_DESCRIPTOR_RANGE D3D12_DESCRIPTOR_RANGE_TYPE
CD3DX12_ROOT_PARAMETER D3D12_SHADER_VISIBILITY
CD3DX12_ROOT_SIGNATURE_DESC D3D12_ROOT_SIGNATURE_FLAGS
ID3DBlob
D3D12SerializeRootSignature D3D_ROOT_SIGNATURE_VERSION
CreateRootSignature
CD3DX12_ROOT_SIGNATURE_DESC
D3D12SerializeRootSignature D3D_ROOT_SIGNATURE_VERSION
CreateRootSignature

 

创建 SRV 和 UAV 缓冲区

SRV 和 UAV 缓冲区由位置和速度数据数组组成。

 // Position and velocity data for the particles in the system.
       // Two buffers full of Particle data are utilized in this sample.
       // The compute thread alternates writing to each of them.
       // The render thread renders using the buffer that is not currently
       // in use by the compute shader.
       struct Particle
       {
              XMFLOAT4 position;
              XMFLOAT4 velocity;
       };
呼叫流 参数
XMFLOAT4

 

创建 CBV 和顶点缓冲区

对于图形管道,CBV 是一个 结构 包含几何着色器使用的两个矩阵。 几何着色器采用系统中每个粒子的位置,并生成一个四边形,以使用这些矩阵来表示它。

 struct ConstantBufferGS
       {
              XMMATRIX worldViewProjection;
              XMMATRIX inverseView;

              // Constant buffers are 256-byte aligned in GPU memory. Padding is added
              // for convenience when computing the struct's size.
              float padding[32];
       };
呼叫流 参数
XMMATRIX

 

因此,顶点着色器使用的顶点缓冲区实际上不包含任何位置数据。

 // "Vertex" definition for particles. Triangle vertices are generated 
       // by the geometry shader. Color data will be assigned to those 
       // vertices via this struct.
       struct ParticleVertex
       {
              XMFLOAT4 color;
       };
呼叫流 参数
XMFLOAT4

 

对于计算管道,CBV 是一种 结构 包含计算着色器中 n 体重力模拟使用的一些常量。

 struct ConstantBufferCS
       {
              UINT param[4];
              float paramf[4];
       };

同步呈现和计算线程

缓冲区全部初始化后,将开始呈现和计算工作。 计算线程将在 SRV 和 UAV 之间来回更改两个位置/速度缓冲区的状态,因为循环访问模拟,并且呈现线程需要确保它在 SRV 上运行的图形管道上安排工作。 围栏用于同步对两个缓冲区的访问。

在呈现线程上:

// Render the scene.
void D3D12nBodyGravity::OnRender()
{
       // Let the compute thread know that a new frame is being rendered.
       for (int n = 0; n < ThreadCount; n++)
       {
              InterlockedExchange(&m_renderContextFenceValues[n], m_renderContextFenceValue);
       }

       // Compute work must be completed before the frame can render or else the SRV 
       // will be in the wrong state.
       for (UINT n = 0; n < ThreadCount; n++)
       {
              UINT64 threadFenceValue = InterlockedGetValue(&m_threadFenceValues[n]);
              if (m_threadFences[n]->GetCompletedValue() < threadFenceValue)
              {
                     // Instruct the rendering command queue to wait for the current 
                     // compute work to complete.
                     ThrowIfFailed(m_commandQueue->Wait(m_threadFences[n].Get(), threadFenceValue));
              }
       }

       // Record all the commands we need to render the scene into the command list.
       PopulateCommandList();

       // Execute the command list.
       ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
       m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

       // Present the frame.
       ThrowIfFailed(m_swapChain->Present(0, 0));

       MoveToNextFrame();
}
呼叫流 参数
InterlockedExchange
InterlockedGetValue
GetCompletedValue
等待
ID3D12CommandList
ExecuteCommandLists
IDXGISwapChain1::P resent1

 

为了稍微简化示例,计算线程会等待 GPU 完成每次迭代,然后再计划更多计算工作。 实际上,应用程序可能希望使计算队列保持完整状态,以实现 GPU 的最大性能。

在计算线程上:

DWORD D3D12nBodyGravity::AsyncComputeThreadProc(int threadIndex)
{
       ID3D12CommandQueue* pCommandQueue = m_computeCommandQueue[threadIndex].Get();
       ID3D12CommandAllocator* pCommandAllocator = m_computeAllocator[threadIndex].Get();
       ID3D12GraphicsCommandList* pCommandList = m_computeCommandList[threadIndex].Get();
       ID3D12Fence* pFence = m_threadFences[threadIndex].Get();

       while (0 == InterlockedGetValue(&m_terminating))
       {
              // Run the particle simulation.
              Simulate(threadIndex);

              // Close and execute the command list.
              ThrowIfFailed(pCommandList->Close());
              ID3D12CommandList* ppCommandLists[] = { pCommandList };

              pCommandQueue->ExecuteCommandLists(1, ppCommandLists);

              // Wait for the compute shader to complete the simulation.
              UINT64 threadFenceValue = InterlockedIncrement(&m_threadFenceValues[threadIndex]);
              ThrowIfFailed(pCommandQueue->Signal(pFence, threadFenceValue));
              ThrowIfFailed(pFence->SetEventOnCompletion(threadFenceValue, m_threadFenceEvents[threadIndex]));
              WaitForSingleObject(m_threadFenceEvents[threadIndex], INFINITE);

              // Wait for the render thread to be done with the SRV so that
              // the next frame in the simulation can run.
              UINT64 renderContextFenceValue = InterlockedGetValue(&m_renderContextFenceValues[threadIndex]);
              if (m_renderContextFence->GetCompletedValue() < renderContextFenceValue)
              {
                     ThrowIfFailed(pCommandQueue->Wait(m_renderContextFence.Get(), renderContextFenceValue));
                     InterlockedExchange(&m_renderContextFenceValues[threadIndex], 0);
              }

              // Swap the indices to the SRV and UAV.
              m_srvIndex[threadIndex] = 1 - m_srvIndex[threadIndex];

              // Prepare for the next frame.
              ThrowIfFailed(pCommandAllocator->Reset());
              ThrowIfFailed(pCommandList->Reset(pCommandAllocator, m_computeState.Get()));
       }

       return 0;
}
呼叫流 参数
ID3D12CommandQueue
ID3D12CommandAllocator
ID3D12GraphicsCommandList
ID3D12Fence
InterlockedGetValue
关闭
ID3D12CommandList
ExecuteCommandLists
InterlockedIncrement
信号
SetEventOnCompletion
WaitForSingleObject
InterlockedGetValue
GetCompletedValue
等待
InterlockedExchange
ID3D12CommandAllocator::Reset
ID3D12GraphicsCommandList::Reset

 

运行示例

最后 n 个身体重力模拟 的屏幕截图

D3D12 代码演练

多引擎同步