IidSpikeDetector Class
This transform detects the spikes in a i.i.d. sequence using adaptive kernel density estimation.
- Inheritance
-
nimbusml.internal.core.timeseries._iidspikedetector.IidSpikeDetectorIidSpikeDetectornimbusml.base_transform.BaseTransformIidSpikeDetectorsklearn.base.TransformerMixinIidSpikeDetector
Constructor
IidSpikeDetector(confidence=99.0, side='TwoSided', pvalue_history_length=100, columns=None, **params)
Parameters
Name | Description |
---|---|
columns
|
see Columns. |
confidence
|
The confidence for spike detection in the range [0, 100]. |
side
|
The argument that determines whether to detect positive or
negative anomalies, or both. Available options are { |
pvalue_history_length
|
The size of the sliding window for computing the p-value. |
params
|
Additional arguments sent to compute engine. |
Examples
###############################################################################
# IidSpikeDetector
import pandas as pd
from nimbusml.timeseries import IidSpikeDetector
X_train = pd.Series([5, 5, 5, 5, 5, 10, 5, 5, 5, 5, 5], name="ts")
isd = IidSpikeDetector(confidence=95, pvalue_history_length=2.5) << {'result': 'ts'}
isd.fit(X_train, verbose=1)
data = isd.transform(X_train)
print(data)
# ts result.Alert result.Raw Score result.P-Value Score
# 0 5.0 0.0 5.0 5.000000e-01
# 1 5.0 0.0 5.0 5.000000e-01
# 2 5.0 0.0 5.0 5.000000e-01
# 3 5.0 0.0 5.0 5.000000e-01
# 4 5.0 0.0 5.0 5.000000e-01
# 5 10.0 1.0 10.0 1.000000e-08 <-- alert is on, predicted spike
# 6 5.0 0.0 5.0 2.613750e-01
# 7 5.0 0.0 5.0 2.613750e-01
# 8 5.0 0.0 5.0 5.000000e-01
# 9 5.0 0.0 5.0 5.000000e-01
# 10 5.0 0.0 5.0 5.000000e-01
Remarks
IIDSpikeDetector
assumes a sequence of data points that are
independently sampled from one stationary
distribution. Adaptive kernel density estimation
is used to model the distribution.
The p-value score
indicates the likelihood of the current observation according to
the estimated distribution. The lower its value, the more likely the
current point is an outlier.
Methods
get_params |
Get the parameters for this operator. |
get_params
Get the parameters for this operator.
get_params(deep=False)
Parameters
Name | Description |
---|---|
deep
|
Default value: False
|