监视器

Monitor 对象通过使用 Monitor.EnterMonitor.TryEnterMonitor.Exit方法对特定对象进行加锁和解锁来提供同步访问代码区域的功能。 对代码区域加锁之后,可以使用 Monitor.WaitMonitor.PulseMonitor.PulseAll方法。 Wait在其暂停并等待通知的情况下解锁。 当 Wait 收到通知时,会返回并重新加锁。 PulsePulseAll 都发送信号以继续执行等待队列中的下一个线程。

Visual Basic SyncLock 和 C# lock 语句使用 Monitor.Enter 获取锁,使用 Monitor.Exit 释放锁。 使用语言语句的优点在于 lock 或 SyncLock 块中的所有内容都包含在 Try 语句中。 Try 语句有一个 Finally 块,用以保证锁得以释放。

Monitor 将锁定对象(即引用类型)而非值类型。 在您将值类型传递给 EnterExit 时,它会针对每个调用分别装箱。 由于每个调用都创建一个单独的对象,所以 Enter 从不拦截,并且其旨在保护的代码并未真正同步。 此外,传递给 Exit 的对象不同于传递给 Enter 的对象,所以 Monitor 将引发 SynchronizationLockException,并显示消息“从不同步的代码块中调用了对象同步方法”。下面的示例演示这些问题。

Try
    Dim x As Integer = 1
    ' The call to Enter() creates a generic synchronizing object for the value
    ' of x each time the code is executed, so that Enter never blocks.
    Monitor.Enter(x)
    Try
        ' Code that needs to be protected by the monitor.
    Finally
        ' Always use Finally to ensure that you exit the Monitor.

        ' The call to Exit() will FAIL!!!
        ' The synchronizing object created for x in Exit() will be different
        ' than the object used in Enter(). SynchronizationLockException
        ' will be thrown.
        Monitor.Exit(x)
    End Try
Catch SyncEx As SynchronizationLockException
    Console.WriteLine("A SynchronizationLockException occurred. Message:")
    Console.WriteLine(SyncEx.Message)
End Try
try
{
    int x = 1;
    // The call to Enter() creates a generic synchronizing object for the value
    // of x each time the code is executed, so that Enter never blocks.
    Monitor.Enter(x);
    try
    {
        // Code that needs to be protected by the monitor.
    }
    finally
    {
        // Always use Finally to ensure that you exit the Monitor.

        // The call to Exit() will FAIL!!!
        // The synchronizing object created for x in Exit() will be different
        // than the object used in Enter(). SynchronizationLockException
        // will be thrown.
        Monitor.Exit(x);
    }
}
catch (SynchronizationLockException SyncEx)
{
    Console.WriteLine("A SynchronizationLockException occurred. Message:");
    Console.WriteLine(SyncEx.Message);
}
try
{
    int x = 1;
    // The call to Enter() creates a generic synchronizing object for the value
    // of x each time the code is executed, so that Enter never blocks.
    Monitor::Enter(x);
    try
    {
        // Code that needs to be protected by the monitor.
    }
    finally
    {
        // Always use Finally to ensure that you exit the Monitor.

        // The call to Exit() will FAIL!!!
        // The synchronizing object created for x in Exit() will be different
        // than the object used in Enter(). SynchronizationLockException
        // will be thrown.
        Monitor::Exit(x);
    }
}
catch (SynchronizationLockException^ SyncEx)
{
    Console::WriteLine("A SynchronizationLockException occurred. Message:");
    Console::WriteLine(SyncEx->Message);
}

虽然您可以在调用 EnterExit 之前装箱值类型变量(如下面的示例所示),并将相同的装箱对象同时传递给两个方法,但是这样做没有任何好处。 对变量的更改不能在装箱的变量中体现出来,也没有办法更改已装箱的变量的值。

Dim x As Integer = 1
Dim o As object = x

Monitor.Enter(o)
Try
    ' Code that needs to be protected by the monitor.
Finally
    ' Always use Finally to ensure that you exit the Monitor.
    Monitor.Exit(o)
End Try
int x = 1;
object o = x;

Monitor.Enter(o);
try
{
    // Code that needs to be protected by the monitor.
}
finally
{
    // Always use Finally to ensure that you exit the Monitor.
    Monitor.Exit(o);
}
int x = 1;
Object^ o = x;

Monitor::Enter(o);
try
{
    // Code that needs to be protected by the monitor.
}
finally
{
    // Always use Finally to ensure that you exit the Monitor.
    Monitor::Exit(o);
}

请务必注意 Monitor 对象和 WaitHandle 对象在使用上的区别。 Monitor 对象是纯托管的,并且完全可移植,从操作系统资源要求来看可能更为高效。 WaitHandle 对象表示操作系统可等待的对象,对于在托管和非托管代码之间实现同步非常有用,并提供一些高级的操作系统功能,例如同时等待多个对象的功能。

下面的代码示例演示 Monitor 类(使用 lock 和 SyncLock 编译器语句实现)、Interlocked 类和 AutoResetEvent 类的结合使用。

Imports System
Imports System.Threading

' Note: The class whose internal public member is the synchronizing
' method is not public; none of the client code takes a lock on the
' Resource object.The member of the nonpublic class takes the lock on
' itself. Written this way, malicious code cannot take a lock on
' a public object.
Class SyncResource
    Public Sub Access(threadNum As Int32)
        ' Uses Monitor class to enforce synchronization.
        SyncLock Me
            ' Synchronized: Despite the next conditional, each thread
            ' waits on its predecessor.
            If threadNum Mod 2 = 0 Then
                Thread.Sleep(2000)
            End If
            Console.WriteLine("Start Synched Resource access (Thread={0})", threadNum)
            Thread.Sleep(200)
            Console.WriteLine("Stop Synched Resource access  (Thread={0})", threadNum)
        End SyncLock
    End Sub
End Class

' Without the lock, the method is called in the order in which threads reach it.
Class UnSyncResource
    Public Sub Access(threadNum As Int32)
        ' Does not use Monitor class to enforce synchronization.
        ' The next call throws the thread order.
        If threadNum Mod 2 = 0 Then
            Thread.Sleep(2000)
        End If
        Console.WriteLine("Start UnSynched Resource access (Thread={0})", threadNum)
        Thread.Sleep(200)
        Console.WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum)
    End Sub
End Class

Public Class App
    Private Shared numAsyncOps As Int32 = 5
    Private Shared asyncOpsAreDone As New AutoResetEvent(false)
    Private Shared SyncRes As New SyncResource()
    Private Shared UnSyncRes As New UnSyncResource()

    Public Shared Sub Main()
        For threadNum As Int32 = 0 To 4
            ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf SyncUpdateResource), threadNum)
        Next threadNum

        ' Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne()
        Console.WriteLine(vbTab + vbNewLine + "All synchronized operations have completed." + vbTab + vbNewLine)

        ' Reset the thread count for unsynchronized calls.
        numAsyncOps = 5

        For threadNum As Int32 = 0 To 4
            ThreadPool.QueueUserWorkItem(New WaitCallback(AddressOf UnSyncUpdateResource), threadNum)
        Next threadNum

        ' Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne()
        Console.WriteLine("\t\nAll unsynchronized thread operations have completed.")
    End Sub

    ' The callback method's signature MUST match that of a
    ' System.Threading.TimerCallback delegate (it takes an Object
    ' parameter and returns void).
    Shared Sub SyncUpdateResource(state As Object)
        ' This calls the internal synchronized method, passing
        ' a thread number.
        SyncRes.Access(CType(state, Int32))

        ' Count down the number of methods that the threads have called.
        ' This must be synchronized, however; you cannot know which thread
        ' will access the value **before** another thread's incremented
        ' value has been stored into the variable.
        If Interlocked.Decrement(numAsyncOps) = 0 Then
            ' Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set()
        End If
    End Sub

    ' The callback method's signature MUST match that of a
    ' System.Threading.TimerCallback delegate (it takes an Object
    ' parameter and returns void).
    Shared Sub UnSyncUpdateResource(state As Object)
        ' This calls the unsynchronized method, passing a thread number.
        UnSyncRes.Access(CType(state, Int32))

        ' Count down the number of methods that the threads have called.
        ' This must be synchronized, however; you cannot know which thread
        ' will access the value **before** another thread's incremented
        ' value has been stored into the variable.
        If Interlocked.Decrement(numAsyncOps) = 0 Then
            ' Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set()
        End If
    End Sub
End Class
using System;
using System.Threading;

// Note: The class whose internal public member is the synchronizing
// method is not public; none of the client code takes a lock on the
// Resource object.The member of the nonpublic class takes the lock on
// itself. Written this way, malicious code cannot take a lock on
// a public object.
class SyncResource
{
    public void Access(Int32 threadNum)
    {
        // Uses Monitor class to enforce synchronization.
        lock (this)
        {
            // Synchronized: Despite the next conditional, each thread
            // waits on its predecessor.
            if (threadNum % 2 == 0)
            {
                Thread.Sleep(2000);
            }
            Console.WriteLine("Start Synched Resource access (Thread={0})", threadNum);
            Thread.Sleep(200);
            Console.WriteLine("Stop Synched Resource access  (Thread={0})", threadNum);
        }
    }
}

// Without the lock, the method is called in the order in which threads reach it.
class UnSyncResource
{
    public void Access(Int32 threadNum)
    {
        // Does not use Monitor class to enforce synchronization.
        // The next call throws the thread order.
        if (threadNum % 2 == 0)
        {
            Thread.Sleep(2000);
        }
        Console.WriteLine("Start UnSynched Resource access (Thread={0})", threadNum);
        Thread.Sleep(200);
        Console.WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum);
    }
}

public class App
{
    static Int32 numAsyncOps = 5;
    static AutoResetEvent asyncOpsAreDone = new AutoResetEvent(false);
    static SyncResource SyncRes = new SyncResource();
    static UnSyncResource UnSyncRes = new UnSyncResource();

    public static void Main()
    {
        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool.QueueUserWorkItem(new WaitCallback(SyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne();
        Console.WriteLine("\t\nAll synchronized operations have completed.\t\n");

        // Reset the thread count for unsynchronized calls.
        numAsyncOps = 5;

        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool.QueueUserWorkItem(new WaitCallback(UnSyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone.WaitOne();
        Console.WriteLine("\t\nAll unsynchronized thread operations have completed.");
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void SyncUpdateResource(Object state)
    {
        // This calls the internal synchronized method, passing
        // a thread number.
        SyncRes.Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked.Decrement(ref numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set();
        }
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void UnSyncUpdateResource(Object state)
    {
        // This calls the unsynchronized method, passing a thread number.
        UnSyncRes.Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked.Decrement(ref numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone.Set();
        }
    }
}
#using <System.dll>

using namespace System;
using namespace System::Threading;

// Note: The class whose internal public member is the synchronizing
// method is not public; none of the client code takes a lock on the
// Resource object.The member of the nonpublic class takes the lock on
// itself. Written this way, malicious code cannot take a lock on
// a public object.
ref class SyncResource
{
public:
    void Access(Int32 threadNum)
    {
        // Uses Monitor class to enforce synchronization.
        Monitor::Enter(this);
        try
        {
            // Synchronized: Despite the next conditional, each thread
            // waits on its predecessor.
            if (threadNum % 2 == 0)
            {
                Thread::Sleep(2000);
            }
            Console::WriteLine("Start Synched Resource access (Thread={0})", threadNum);
            Thread::Sleep(200);
            Console::WriteLine("Stop Synched Resource access  (Thread={0})", threadNum);
        }
        finally
        {
            Monitor::Exit(this);
        }
    }
};

// Without the lock, the method is called in the order in which threads reach it.
ref class UnSyncResource
{
public:
    void Access(Int32 threadNum)
    {
        // Does not use Monitor class to enforce synchronization.
        // The next call throws the thread order.
        if (threadNum % 2 == 0)
        {
            Thread::Sleep(2000);
        }
        Console::WriteLine("Start UnSynched Resource access (Thread={0})", threadNum);
        Thread::Sleep(200);
        Console::WriteLine("Stop UnSynched Resource access  (Thread={0})", threadNum);
    }
};

public ref class App
{
private:
    static Int32 numAsyncOps = 5;
    static AutoResetEvent^ asyncOpsAreDone = gcnew AutoResetEvent(false);
    static SyncResource^ SyncRes = gcnew SyncResource();
    static UnSyncResource^ UnSyncRes = gcnew UnSyncResource();

public:
    static void Main()
    {
        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool::QueueUserWorkItem(gcnew WaitCallback(SyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone->WaitOne();
        Console::WriteLine("\t\nAll synchronized operations have completed.\t\n");

        // Reset the thread count for unsynchronized calls.
        numAsyncOps = 5;

        for (Int32 threadNum = 0; threadNum < 5; threadNum++)
        {
            ThreadPool::QueueUserWorkItem(gcnew WaitCallback(UnSyncUpdateResource), threadNum);
        }

        // Wait until this WaitHandle is signaled.
        asyncOpsAreDone->WaitOne();
        Console::WriteLine("\t\nAll unsynchronized thread operations have completed.");
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void SyncUpdateResource(Object^ state)
    {
        // This calls the internal synchronized method, passing
        // a thread number.
        SyncRes->Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked::Decrement(numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone->Set();
        }
    }

    // The callback method's signature MUST match that of a
    // System.Threading.TimerCallback delegate (it takes an Object
    // parameter and returns void).
    static void UnSyncUpdateResource(Object^ state)
    {
        // This calls the unsynchronized method, passing a thread number.
        UnSyncRes->Access((Int32) state);

        // Count down the number of methods that the threads have called.
        // This must be synchronized, however; you cannot know which thread
        // will access the value **before** another thread's incremented
        // value has been stored into the variable.
        if (Interlocked::Decrement(numAsyncOps) == 0)
        {
            // Announce to Main that in fact all thread calls are done.
            asyncOpsAreDone->Set();
        }
    }
};

int main()
{
    App::Main();
}

请参见

参考

Monitor

其他资源

线程处理对象和功能