你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

缩放级别和磁贴网格

Azure Maps 使用球面墨卡托投影坐标系 (EPSG:3857)。 投影是用于将球形地球仪转换为平面地图的数学模型。 球面墨卡托投影在极点处拉伸地图以创建方形地图。 此投影会显著扭曲地图的比例和面积,但具有两个重要属性,可以抵消此变形:

  • 这是一种等角投影,这意味着它保留了相对较小的对象的形状。 在显示航空影像时,保留小对象的形状尤为重要。 例如,我们希望避免扭曲建筑物的形状。 方形建筑物应显示为正方形,而不是矩形。
  • 这是一个圆柱形投影。 北和南总是上下,西和东总是左和右。

为了优化地图检索和显示的性能,地图被划分为方形切片。 Azure Maps SDK 使用大小为 512 x 512 像素的图块用于道路地图,使用较小的 256 x 256 像素的图块用于卫星图像。 Azure Maps 提供 23 个缩放级别的栅格和矢量图块,编号为 0 到 22。 缩放级别为 0 时,整个世界都适合单个图块:

世界地图瓦片

缩放级别 1 使用四个图块来渲染世界:一个 2 x 2 的正方形

2x2 地图瓦片布局

每个额外的缩放级别都会对前一个磁贴进行四倍划分,从而创建一个 2缩放 x 2缩放的网格。 缩放级别 22 是网格 222 x 222,或 4,194,304 x 4,194,304 个图块(总共 17,592,186,044,416 个图块)。

适用于 Web 的 Azure Maps 交互式地图控件支持 25 个缩放级别,编号为 0 到 24。 尽管道路数据仅在磁贴可用时在缩放级别可用。

下表提供了切片大小为 256 像素正方形的缩放级别的完整值列表:

缩放级别 米/像素 米/瓦片侧
0 156543 40075017
1 78271.5 20037508
2 39135.8 10018754
3 19567.88 5009377.1
4 9783.94 2504688.5
5 4891.97 1252344.3
6 2445.98 626172.1
7 1222.99 313086.1
8 611.5 156543
9 305.75 78271.5
10 152.87 39135.8
11 76.44 19567.9
12 38.219 9783.94
13 19.109 4891.97
14 9.555 2445.98
15 4.777 1222.99
16 2.3887 611.496
十七 1.1943 305.748
18 0.5972 152.874
19 0.2986 76.437
20 0.14929 38.2185
21 0.074646 19.10926
22 0.037323 9.55463
23 0.0186615 4.777315
24 0.00933075 2.3886575

像素坐标

选择在每个缩放级别使用的投影和比例后,我们可以将地理坐标转换为像素坐标。 特定缩放级别的世界地图图像的完整像素宽度和高度计算如下:

var mapWidth = tileSize * Math.pow(2, zoom);

var mapHeight = mapWidth;

由于每个缩放级别的地图宽度和高度都不同,因此像素坐标也不同。 地图左上角的像素始终具有像素坐标 (0, 0)。 地图右下角的像素具有像素坐标 (width-1, height-1),或参考上一节中的公式 (tileSize * 2zoom–1, tileSize * 2zoom–1)。 例如,在级别 2 使用 512 个方形图块时,像素坐标范围为 (0, 0) 到 (2047, 2047),如下所示:

显示像素尺寸的地图

给定以度为单位的纬度和经度以及细节级别,像素 XY 坐标的计算方式如下:

var sinLatitude = Math.sin(latitude * Math.PI/180);

var pixelX = ((longitude + 180) / 360) * tileSize * Math.pow(2, zoom);

var pixelY = (0.5 – Math.log((1 + sinLatitude) / (1 – sinLatitude)) / (4 * Math.PI)) * tileSize * Math.pow(2, zoom);

假定纬度值和经度值位于 WGS 84 基准面上。 尽管 Azure Maps 使用球面投影,但请务必将所有地理坐标转换为通用基准面。 WGS 84 是选定的基准面。 假设经度值的范围为 -180 度到 +180 度,并且必须将纬度值剪裁为 -85.05112878 到 85.05112878 的范围。 遵循这些值可避免极点处出现奇异点,并确保投影地图为方形。

平铺坐标

为了优化地图检索和显示的性能,渲染的地图被剪切成切片。 像素数和瓦片数在每个缩放级别上都不同:

var numberOfTilesWide = Math.pow(2, zoom);

var numberOfTilesHigh = numberOfTilesWide;

每个图块都有 XY 坐标,范围从左上角的 (0, 0) 到右下角的 (2缩放 - 1, 2缩放 - 1)。 例如,在缩放级别 3 时,图块坐标的范围从 (0, 0) 到 (7, 7),如下所示:

瓦片坐标地图

给定一对像素 XY 坐标,您可以轻松确定包含该像素的图块的图块 XY 坐标:

var tileX = Math.floor(pixelX / tileSize);

var tileY = Math.floor(pixelY / tileSize);

磁贴按缩放级别调用。 x 和 y 坐标对应于该缩放级别的图块在网格上的位置。

在确定要使用的缩放级别时,请记住每个位置都位于其磁贴上的固定位置。 因此,显示给定大片领土所需的图块数量取决于缩放网格在世界地图上的具体位置。 例如,如果有两个点相距 900 米,则 可能 只需要三个切片即可在缩放级别 17 下显示它们之间的路线。 但是,如果西点位于其图块的右侧,而东点位于其图块的左侧,则它可能需要四个图块:

Zoom 演示规模

确定缩放级别后,可以计算 x 和 y 值。 每个缩放网格中的左上角图块为 x=0、y=0;右下角的磁贴位于 x=2缩放-1、y=2缩放-1 处。

以下是缩放级别 1 的缩放网格:

缩放级别 1 的缩放网格

Quadkey 索引

某些映射平台使用 quadkey 索引命名约定,将图块 ZY 坐标组合成一个称为 quadtree keys 或 quadkeys 简称的一维字符串。 每个索引 quadkey 都唯一标识特定细节级别的单个切片,并且可以用作常见数据库 B 树索引中的键。 Azure Maps SDK 支持叠加使用 quadkey 命名约定的瓦片层,以及 添加瓦片层 文档中记录的其他命名约定。

注释

quadkeys命名约定仅适用于 1 或更大的缩放级别。 Azure Maps SDK 支持缩放级别 0,这是整个世界的单个地图图块。

要将平铺坐标转换为 a quadkey,Y 和 X 坐标的位将交错,并将结果解释为以 4 为基数的数字(保留前导零)并转换为字符串。 例如,给定级别 3 的瓦片 XY 坐标为 (3, 5),则 quadkey 确定如下:

tileX = 3 = 011 (base 2)

tileY = 5 = 101 (base 2)

quadkey = 100111 (base 2) = 213 (base 4) = "213"

Qquadkeys 有几个有趣的属性。 首先,a quadkey 的长度 (位数) 等于相应磁贴的缩放级别。 其次,任何图块的 the quadkey 都以其 quadkey 父图块(上一级的包含图块)的 开始。 如以下示例所示,磁贴 2 是磁贴 20 到 23 的父级:

Quadkey tile pyramid (四键图金字塔)

最后, quadkeys 提供一个一维索引键,该键通常保留 XY 空间中图块的邻近度。 换句话说,具有附近 XY 坐标的两个图块通常彼此 quadkeys 相对靠近。 这对于优化数据库性能非常重要,因为相邻切片通常是成组请求的,并且最好将这些切片保留在同一磁盘块上,以最大程度地减少磁盘读取次数。

Tile math 源代码

以下示例代码说明了如何实现本文档中描述的功能。 这些函数可以根据需要轻松翻译成其他编程语言。

using System;
using System.Text;

namespace AzureMaps
{
    /// <summary>
    /// Tile System math for the Spherical Mercator projection coordinate system (EPSG:3857)
    /// </summary>
    public static class TileMath
    {
        //Earth radius in meters.
        private const double EarthRadius = 6378137;

        private const double MinLatitude = -85.05112878;
        private const double MaxLatitude = 85.05112878;
        private const double MinLongitude = -180;
        private const double MaxLongitude = 180;

        /// <summary>
        /// Clips a number to the specified minimum and maximum values.
        /// </summary>
        /// <param name="n">The number to clip.</param>
        /// <param name="minValue">Minimum allowable value.</param>
        /// <param name="maxValue">Maximum allowable value.</param>
        /// <returns>The clipped value.</returns>
        private static double Clip(double n, double minValue, double maxValue)
        {
            return Math.Min(Math.Max(n, minValue), maxValue);
        }

        /// <summary>
        /// Calculates width and height of the map in pixels at a specific zoom level from -180 degrees to 180 degrees.
        /// </summary>
        /// <param name="zoom">Zoom Level to calculate width at</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>Width and height of the map in pixels</returns>
        public static double MapSize(double zoom, int tileSize)
        {
            return Math.Ceiling(tileSize * Math.Pow(2, zoom));
        }

        /// <summary>
        /// Calculates the Ground resolution at a specific degree of latitude in meters per pixel.
        /// </summary>
        /// <param name="latitude">Degree of latitude to calculate resolution at</param>
        /// <param name="zoom">Zoom level to calculate resolution at</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>Ground resolution in meters per pixels</returns>
        public static double GroundResolution(double latitude, double zoom, int tileSize)
        {
            latitude = Clip(latitude, MinLatitude, MaxLatitude);
            return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(zoom, tileSize);
        }

        /// <summary>
        /// Determines the map scale at a specified latitude, level of detail, and screen resolution.
        /// </summary>
        /// <param name="latitude">Latitude (in degrees) at which to measure the map scale.</param>
        /// <param name="zoom">Level of detail, from 1 (lowest detail) to 23 (highest detail).</param>
        /// <param name="screenDpi">Resolution of the screen, in dots per inch.</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns>
        public static double MapScale(double latitude, double zoom, int screenDpi, int tileSize)
        {
            return GroundResolution(latitude, zoom, tileSize) * screenDpi / 0.0254;
        }

        /// <summary>
        /// Global Converts a Pixel coordinate into a geospatial coordinate at a specified zoom level. 
        /// Global Pixel coordinates are relative to the top left corner of the map (90, -180)
        /// </summary>
        /// <param name="pixel">Pixel coordinates in the format of [x, y].</param>  
        /// <param name="zoom">Zoom level</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>A position value in the format [longitude, latitude].</returns>
        public static double[] GlobalPixelToPosition(double[] pixel, double zoom, int tileSize)
        {
            var mapSize = MapSize(zoom, tileSize);

            var x = (Clip(pixel[0], 0, mapSize - 1) / mapSize) - 0.5;
            var y = 0.5 - (Clip(pixel[1], 0, mapSize - 1) / mapSize);

            return new double[] {
                360 * x,    //Longitude
                90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI  //Latitude
            };
        }

        /// <summary>
        /// Converts a point from latitude/longitude WGS-84 coordinates (in degrees) into pixel XY coordinates at a specified level of detail.
        /// </summary>
        /// <param name="position">Position coordinate in the format [longitude, latitude]</param>
        /// <param name="zoom">Zoom level.</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param> 
        /// <returns>A global pixel coordinate.</returns>
        public static double[] PositionToGlobalPixel(double[] position, int zoom, int tileSize)
        {
            var latitude = Clip(position[1], MinLatitude, MaxLatitude);
            var longitude = Clip(position[0], MinLongitude, MaxLongitude);

            var x = (longitude + 180) / 360;
            var sinLatitude = Math.Sin(latitude * Math.PI / 180);
            var y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);

            var mapSize = MapSize(zoom, tileSize);

            return new double[] {
                 Clip(x * mapSize + 0.5, 0, mapSize - 1),
                 Clip(y * mapSize + 0.5, 0, mapSize - 1)
            };
        }

        /// <summary>
        /// Converts pixel XY coordinates into tile XY coordinates of the tile containing the specified pixel.
        /// </summary>
        /// <param name="pixel">Pixel coordinates in the format of [x, y].</param>  
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
        /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
        public static void GlobalPixelToTileXY(double[] pixel, int tileSize, out int tileX, out int tileY)
        {
            tileX = (int)(pixel[0] / tileSize);
            tileY = (int)(pixel[1] / tileSize);
        }

        /// <summary>
        /// Performs a scale transform on a global pixel value from one zoom level to another.
        /// </summary>
        /// <param name="pixel">Pixel coordinates in the format of [x, y].</param>  
        /// <param name="oldZoom">The zoom level in which the input global pixel value is from.</param>  
        /// <returns>A scale pixel coordinate.</returns>
        public static double[] ScaleGlobalPixel(double[] pixel, double oldZoom, double newZoom)
        {
            var scale = Math.Pow(2, oldZoom - newZoom);

            return new double[] { pixel[0] * scale, pixel[1] * scale };
        }

        /// <summary>
        /// Performs a scale transform on a set of global pixel values from one zoom level to another.
        /// </summary>
        /// <param name="pixels">A set of global pixel value from the old zoom level. Points are in the format [x,y].</param>
        /// <param name="oldZoom">The zoom level in which the input global pixel values is from.</param>
        /// <param name="newZoom">The new zoom level in which the output global pixel values should be aligned with.</param>
        /// <returns>A set of global pixel values that has been scaled for the new zoom level.</returns>
        public static double[][] ScaleGlobalPixels(double[][] pixels, double oldZoom, double newZoom)
        {
            var scale = Math.Pow(2, oldZoom - newZoom);

            var output = new System.Collections.Generic.List<double[]>();
            foreach (var p in pixels)
            {
                output.Add(new double[] { p[0] * scale, p[1] * scale });
            }

            return output.ToArray();
        }

        /// <summary>
        /// Converts tile XY coordinates into a global pixel XY coordinates of the upper-left pixel of the specified tile.
        /// </summary>
        /// <param name="tileX">Tile X coordinate.</param>
        /// <param name="tileY">Tile Y coordinate.</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <param name="pixelX">Output parameter receiving the X coordinate of the point, in pixels.</param>  
        /// <param name="pixelY">Output parameter receiving the Y coordinate of the point, in pixels.</param>  
        public static double[] TileXYToGlobalPixel(int tileX, int tileY, int tileSize)
        {
            return new double[] { tileX * tileSize, tileY * tileSize };
        }

        /// <summary>
        /// Converts tile XY coordinates into a quadkey at a specified level of detail.
        /// </summary>
        /// <param name="tileX">Tile X coordinate.</param>
        /// <param name="tileY">Tile Y coordinate.</param>
        /// <param name="zoom">Zoom level</param>
        /// <returns>A string containing the quadkey.</returns>
        public static string TileXYToQuadKey(int tileX, int tileY, int zoom)
        {
            var quadKey = new StringBuilder();
            for (int i = zoom; i > 0; i--)
            {
                char digit = '0';
                int mask = 1 << (i - 1);
                if ((tileX & mask) != 0)
                {
                    digit++;
                }
                if ((tileY & mask) != 0)
                {
                    digit++;
                    digit++;
                }
                quadKey.Append(digit);
            }
            return quadKey.ToString();
        }

        /// <summary>
        /// Converts a quadkey into tile XY coordinates.
        /// </summary>
        /// <param name="quadKey">Quadkey of the tile.</param>
        /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
        /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
        /// <param name="zoom">Output parameter receiving the zoom level.</param>
        public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out int zoom)
        {
            tileX = tileY = 0;
            zoom = quadKey.Length;
            for (int i = zoom; i > 0; i--)
            {
                int mask = 1 << (i - 1);
                switch (quadKey[zoom - i])
                {
                    case '0':
                        break;

                    case '1':
                        tileX |= mask;
                        break;

                    case '2':
                        tileY |= mask;
                        break;

                    case '3':
                        tileX |= mask;
                        tileY |= mask;
                        break;

                    default:
                        throw new ArgumentException("Invalid QuadKey digit sequence.");
                }
            }
        }

        /// <summary>
        /// Calculates the XY tile coordinates that a coordinate falls into for a specific zoom level.
        /// </summary>
        /// <param name="position">Position coordinate in the format [longitude, latitude]</param>
        /// <param name="zoom">Zoom level</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <param name="tileX">Output parameter receiving the tile X position.</param>
        /// <param name="tileY">Output parameter receiving the tile Y position.</param>
        public static void PositionToTileXY(double[] position, int zoom, int tileSize, out int tileX, out int tileY)
        {
            var latitude = Clip(position[1], MinLatitude, MaxLatitude);
            var longitude = Clip(position[0], MinLongitude, MaxLongitude);

            var x = (longitude + 180) / 360;
            var sinLatitude = Math.Sin(latitude * Math.PI / 180);
            var y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);

            //tileSize needed in calculations as in rare cases the multiplying/rounding/dividing can make the difference of a pixel which can result in a completely different tile. 
            var mapSize = MapSize(zoom, tileSize);
            tileX = (int)Math.Floor(Clip(x * mapSize + 0.5, 0, mapSize - 1) / tileSize);
            tileY = (int)Math.Floor(Clip(y * mapSize + 0.5, 0, mapSize - 1) / tileSize);
        }

        /// <summary>
        /// Calculates the tile quadkey strings that are within a specified viewport.
        /// </summary>
        /// <param name="position">Position coordinate in the format [longitude, latitude]</param>
        /// <param name="zoom">Zoom level</param>
        /// <param name="width">The width of the map viewport in pixels.</param>
        /// <param name="height">The height of the map viewport in pixels.</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>A list of quadkey strings that are within the specified viewport.</returns>
        public static string[] GetQuadkeysInView(double[] position, int zoom, int width, int height, int tileSize)
        {
            var p = PositionToGlobalPixel(position, zoom, tileSize);

            var top = p[1] - height * 0.5;
            var left = p[0] - width * 0.5;

            var bottom = p[1] + height * 0.5;
            var right = p[0] + width * 0.5;

            var tl = GlobalPixelToPosition(new double[] { left, top }, zoom, tileSize);
            var br = GlobalPixelToPosition(new double[] { right, bottom }, zoom, tileSize);

            //Boudning box in the format: [west, south, east, north];
            var bounds = new double[] { tl[0], br[1], br[0], tl[1] };

            return GetQuadkeysInBoundingBox(bounds, zoom, tileSize);
        }

        /// <summary>
        /// Calculates the tile quadkey strings that are within a bounding box at a specific zoom level.
        /// </summary>
        /// <param name="bounds">A bounding box defined as an array of numbers in the format of [west, south, east, north].</param>
        /// <param name="zoom">Zoom level to calculate tiles for.</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>A list of quadkey strings.</returns>
        public static string[] GetQuadkeysInBoundingBox(double[] bounds, int zoom, int tileSize)
        {
            var keys = new System.Collections.Generic.List<string>();

            if (bounds != null && bounds.Length >= 4)
            {
                PositionToTileXY(new double[] { bounds[3], bounds[0] }, zoom, tileSize, out int tlX, out int tlY);
                PositionToTileXY(new double[] { bounds[1], bounds[2] }, zoom, tileSize, out int brX, out int brY);

                for (int x = tlX; x <= brX; x++)
                {
                    for (int y = tlY; y <= brY; y++)
                    {
                        keys.Add(TileXYToQuadKey(x, y, zoom));
                    }
                }
            }

            return keys.ToArray();
        }

        /// <summary>
        /// Calculates the bounding box of a tile.
        /// </summary>
        /// <param name="tileX">Tile X coordinate</param>
        /// <param name="tileY">Tile Y coordinate</param>
        /// <param name="zoom">Zoom level</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid.</param>
        /// <returns>A bounding box of the tile defined as an array of numbers in the format of [west, south, east, north].</returns>
        public static double[] TileXYToBoundingBox(int tileX, int tileY, double zoom, int tileSize)
        {
            //Top left corner pixel coordinates
            var x1 = (double)(tileX * tileSize);
            var y1 = (double)(tileY * tileSize);

            //Bottom right corner pixel coordinates
            var x2 = (double)(x1 + tileSize);
            var y2 = (double)(y1 + tileSize);

            var nw = GlobalPixelToPosition(new double[] { x1, y1 }, zoom, tileSize);
            var se = GlobalPixelToPosition(new double[] { x2, y2 }, zoom, tileSize);

            return new double[] { nw[0], se[1], se[0], nw[1] };
        }

        /// <summary>
        /// Calculates the best map view (center, zoom) for a bounding box on a map.
        /// </summary>
        /// <param name="bounds">A bounding box defined as an array of numbers in the format of [west, south, east, north].</param>
        /// <param name="mapWidth">Map width in pixels.</param>
        /// <param name="mapHeight">Map height in pixels.</param>
        /// <param name="latitude">Output parameter receiving the center latitude coordinate.</param>
        /// <param name="longitude">Output parameter receiving the center longitude coordinate.</param>
        /// <param name="zoom">Output parameter receiving the zoom level</param>
        /// <param name="padding">Width in pixels to use to create a buffer around the map. This is to keep markers from being cut off on the edge. Default: 0</param>
        /// <param name="tileSize">The size of the tiles in the tile pyramid. Default: 512</param>
        /// <param name="maxZoom">Optional maximum zoom level to return. Useful when the bounding box represents a very small area. Default: 24</param>
        /// <param name="allowFloatZoom">Specifies if the returned zoom level should be a float or rounded down to an whole integer zoom level. Default: true</param>
        public static void BestMapView(BoundingBox bounds, double mapWidth, double mapHeight, out double centerLat, out double centerLon, out double zoom, int padding = 0, int tileSize = 512, double maxZoom = 24, bool allowFloatZoom = true)
        {
        	centerLat = 0;
        	centerLon = 0;
        	zoom = 0;
        
        	if (bounds != null && mapWidth > 0 && mapHeight > 0)
        	{
        		//Ensure padding is valid.
        		padding = Math.Abs(padding);
        
        		//Ensure max zoom is within valid range.
        		maxZoom = Clip(maxZoom, 0, 24);
        
        		//Do pixel calculations at zoom level 24 as that will provide a high level of visual accuracy.
        		int pixelZoom = 24;
        
        		//Calculate mercator pixel coordinate at zoom level 24.
        		var wnPixel = PositionToGlobalPixel(new double[] { bounds[0], bounds[3] }, pixelZoom, tileSize);
        		var esPixel = PositionToGlobalPixel(new double[] { bounds[2], bounds[1] }, pixelZoom, tileSize);
        
        		//Calculate the pixel distance between pixels for each axis.
        		double dx = esPixel[0] - wnPixel[0];
        		double dy = esPixel[1] - wnPixel[1];
        
        		//Calculate the average pixel positions to get the visual center.
        		double xAvg = (esPixel[0] + wnPixel[0]) / 2;
        		double yAvg = (esPixel[1] + wnPixel[1]) / 2;
        
        		//Determine if the bounding box crosses the antimeridian. (West pixel will be greater than East pixel).
        		if (wnPixel[0] > esPixel[0])
        		{
        			double mapSize = MapSize(24, tileSize);
        
        			//We are interested in the opposite area of the map. Calculate the opposite area and visual center.
        			dx = mapSize - Math.Abs(dx);
        
        			//Offset the visual center by half the global map width at zoom 24 on the x axis.
        			xAvg += mapSize / 2;
        		}
        
        		//Convert visual center pixel from zoom 24 to lngLat.
        		center = GlobalPixelToPosition(new Pixel(xAvg, yAvg), pixelZoom, tileSize);
        
        		//Calculate scale of screen pixels per unit on the Web Mercator plane.
        		double scaleX = (mapWidth - padding * 2) / Math.Abs(dx) * Math.Pow(2, pixelZoom);
        		double scaleY = (mapHeight - padding * 2) / Math.Abs(dy) * Math.Pow(2, pixelZoom);
        
        		//Calculate zoom levels based on the x/y scales. Choose the most zoomed out value.
        		zoom = Math.Max(0, Math.Min(maxZoom, Math.Log2(Math.Abs(Math.Min(scaleX, scaleY)))));
        
        		//Round down zoom level if float values are not desired.
        		if (!allowFloatZoom)
        		{
        			zoom = Math.Floor(zoom);
        		}
        	}
        
        	return new CameraOptions
        	{
        		Center = center,
        		Zoom = zoom
        	};
        }
    }
}

注释

Azure Maps SDK 中的交互式地图控件具有用于在地理空间位置和视区像素之间进行转换的帮助程序函数。

后续步骤

从 Azure Maps REST 服务直接访问地图图块:

了解有关地理空间概念的更多信息: