你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

如何将现有 Azure AI 搜索索引与 Azure AI 搜索工具配合使用

本文介绍如何将现有的 Azure AI 搜索索引与 Azure AI 搜索工具配合使用。

先决条件

完成 Azure AI 搜索工具设置

  1. 转到 Azure AI Foundry 门户,导航到代理的“代理”屏幕,向下滚动“知识”右侧的“设置”窗格。 然后选择“添加”。

    显示 Azure AI Foundry 门户中可用工具类别的屏幕截图。

  2. 选择 Azure AI 搜索并按照提示添加该工具。

    显示 Azure AI Foundry 门户中可用的知识工具的屏幕截图。

创建 Azure AI 客户端

首先,使用项目的终结点创建 Azure AI 客户端。

import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential

# Retrieve the endpoint from environment variables
project_endpoint = os.environ["PROJECT_ENDPOINT"]

# Initialize the AIProjectClient
project_client = AIProjectClient(
    endpoint=project_endpoint,
    credential=DefaultAzureCredential(exclude_interactive_browser_credential=False),
    api_version="latest",
)

配置 Azure AI 搜索工具

使用 Azure AI 搜索资源的连接 ID,将 Azure AI 搜索工具配置为使用 Azure AI 搜索索引。

from azure.ai.agents.models import AzureAISearchTool, AzureAISearchQueryType
from azure.ai.projects.models import ConnectionType

# Define the Azure AI Search connection ID and index name
azure_ai_conn_id = project_client.connections.get_default(ConnectionType.AZURE_AI_SEARCH).id

# find the index name in your AI Search Azure resource page under Search Management -> Indexes
index_name = "sample_index"

# Initialize the Azure AI Search tool
ai_search = AzureAISearchTool(
    index_connection_id=azure_ai_conn_id,
    index_name=index_name,
    query_type=AzureAISearchQueryType.SIMPLE,  # Use SIMPLE query type
    top_k=3,  # Retrieve the top 3 results
    filter="",  # Optional filter for search results
)

使用已启用 Azure AI 搜索工具创建代理

使用附加的 Azure AI 搜索工具创建代理。 将模型更改为项目中部署的模型。

# Define the model deployment name
model_deployment_name = os.environ["MODEL_DEPLOYMENT_NAME"]

# Create an agent with the Azure AI Search tool
agent = project_client.agents.create_agent(
    model=model_deployment_name,
    name="my-agent",
    instructions="You are a helpful agent",
    tools=ai_search.definitions,
    tool_resources=ai_search.resources,
)
print(f"Created agent, ID: {agent.id}")

向代理询问索引中的数据

创建代理后,请询问有关 Azure AI 搜索索引中的数据的问题。

from azure.ai.agents.models import MessageRole, ListSortOrder

# Create a thread for communication
thread = project_client.agents.threads.create()
print(f"Created thread, ID: {thread.id}")

# Send a message to the thread
message = project_client.agents.messages.create(
    thread_id=thread.id,
    role=MessageRole.USER,
    content="What is the temperature rating of the cozynights sleeping bag?",
)
print(f"Created message, ID: {message['id']}")

# Create and process a run with the specified thread and agent
run = project_client.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
print(f"Run finished with status: {run.status}")

# Check if the run failed
if run.status == "failed":
    print(f"Run failed: {run.last_error}")

# Fetch and log all messages in the thread
messages = project_client.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages.data:
    print(f"Role: {message.role}, Content: {message.content}")

清理资源

完成作后,删除代理以清理资源。

# Delete the agent
project_client.agents.delete_agent(agent.id)
print("Deleted agent")

创建项目客户端

创建一个客户端对象,其中包含用于连接到 AI 项目和其他资源的项目终结点。

using Azure;
using Azure.AI.Agents.Persistent;
using Azure.Identity;
using Microsoft.Extensions.Configuration;
using System;
using System.Threading;

// Get Connection information from app configuration
IConfigurationRoot configuration = new ConfigurationBuilder()
    .SetBasePath(AppContext.BaseDirectory)
    .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
    .Build();

var projectEndpoint = configuration["ProjectEndpoint"];
var modelDeploymentName = configuration["ModelDeploymentName"];
var azureAiSearchConnectionId = configuration["AzureAiSearchConnectionId"];

// Create the Agent Client
PersistentAgentsClient agentClient = new(projectEndpoint, new DefaultAzureCredential());

配置 Azure AI 搜索工具

使用 AI 搜索连接 ID,将 Azure AI 搜索工具配置为使用 Azure AI 搜索索引。

AzureAISearchToolResource searchResource = new(
    indexConnectionId: azureAiSearchConnectionId,
    indexName: "sample_index",
    topK: 5,
    filter: "category eq 'sleeping bag'",
    queryType: AzureAISearchQueryType.Simple
);

ToolResources toolResource = new() { AzureAISearch = searchResource };

使用已启用 Azure AI 搜索工具创建代理

将模型更改为项目中部署的模型。 可以在“模型”选项卡下的 Azure AI Foundry 中找到模型名称。还可以更改代理的名称和说明,以满足你的需求。

// Create an agent with Tools and Tool Resources
PersistentAgent agent = agentClient.Administration.CreateAgent(
    model: modelDeploymentName,
    name: "my-agent",
    instructions: "Use the index provided to answer questions.",
    tools: [new AzureAISearchToolDefinition()],
    toolResources: toolResource
);

向代理询问索引中的数据

创建代理后,请询问有关 Azure AI 搜索索引中的数据的问题。

// Create thread for communication
PersistentAgentThread thread = agentClient.Threads.CreateThread();

// Create message and run the agent
PersistentThreadMessage message = agentClient.Messages.CreateMessage(
    thread.Id,
    MessageRole.User,
    "What is the temperature rating of the cozynights sleeping bag?");
ThreadRun run = agentClient.Runs.CreateRun(thread, agent);

等待代理完成并打印输出

等待代理完成运行并将输出输出打印到控制台。

// Wait for the agent to finish running
do
{
    Thread.Sleep(TimeSpan.FromMilliseconds(500));
    run = agentClient.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
    || run.Status == RunStatus.InProgress);

// Confirm that the run completed successfully
if (run.Status != RunStatus.Completed)
{
    throw new Exception("Run did not complete successfully, error: " + run.LastError?.Message);
}

// Retrieve the messages from the agent client
Pageable<PersistentThreadMessage> messages = agentClient.Messages.GetMessages(
    threadId: thread.Id,
    order: ListSortOrder.Ascending
);

// Process messages in order
foreach (PersistentThreadMessage threadMessage in messages)
{
    Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
    foreach (MessageContent contentItem in threadMessage.ContentItems)
    {
        if (contentItem is MessageTextContent textItem)
        {
            // We need to annotate only Agent messages.
            if (threadMessage.Role == MessageRole.Agent && textItem.Annotations.Count > 0)
            {
                string annotatedText = textItem.Text;

                // If we have Text URL citation annotations, reformat the response to show title & URL for citations
                foreach (MessageTextAnnotation annotation in textItem.Annotations)
                {
                    if (annotation is MessageTextUriCitationAnnotation urlAnnotation)
                    {
                        annotatedText = annotatedText.Replace(
                            urlAnnotation.Text,
                            $" [see {urlAnnotation.UriCitation.Title}] ({urlAnnotation.UriCitation.Uri})");
                    }
                }
                Console.Write(annotatedText);
            }
            else
            {
                Console.Write(textItem.Text);
            }
        }
        else if (contentItem is MessageImageFileContent imageFileItem)
        {
            Console.Write($"<image from ID: {imageFileItem.FileId}");
        }
        Console.WriteLine();
    }
}

(可选)输出代理使用的运行步骤

// Retrieve the run steps used by the agent and print those to the console
Console.WriteLine("Run Steps used by Agent:");
Pageable<RunStep> runSteps = agentClient.Runs.GetRunSteps(run);

foreach (var step in runSteps)
{
    Console.WriteLine($"Step ID: {step.Id}, Total Tokens: {step.Usage.TotalTokens}, Status: {step.Status}, Type: {step.Type}");

    if (step.StepDetails is RunStepMessageCreationDetails messageCreationDetails)
    {
        Console.WriteLine($"   Message Creation Id: {messageCreationDetails.MessageCreation.MessageId}");
    }
    else if (step.StepDetails is RunStepToolCallDetails toolCallDetails)
    {
        // We know this agent only has the AI Search tool, so we can cast it directly
        foreach (RunStepAzureAISearchToolCall toolCall in toolCallDetails.ToolCalls)
        {
            Console.WriteLine($"   Tool Call Details: {toolCall.GetType()}");

            foreach (var result in toolCall.AzureAISearch)
            { 
                Console.WriteLine($"      {result.Key}: {result.Value}");
            }
        }
    }
}

清理资源

请清理此示例中的资源。

// Clean up resources
agentClient.Threads.DeleteThread(thread.Id);
agentClient.Administration.DeleteAgent(agent.Id);

创建 Azure AI 客户端

首先,使用项目的终结点创建 Azure AI 客户端。

const projectEndpoint = process.env["PROJECT_ENDPOINT"];

if (!projectString) {
  throw new Error("AZURE_AI_PROJECTS_CONNECTION_STRING must be set in the environment variables");
}

const client = new AgentsClient(projectEndpoint, new DefaultAzureCredential());

配置 Azure AI 搜索工具

使用 Azure AI 搜索资源的连接 ID,将 Azure AI 搜索工具配置为使用 Azure AI 搜索索引。

const connectionId = process.env["AZURE_AI_CONNECTION_ID"] || "<connection-name>";

const azureAISearchTool = ToolUtility.createAzureAISearchTool(connectionId, "ai-search-sample", {
    queryType: "simple",
    topK: 3,
    filter: "",
    indexConnectionId: "",
    indexName: "",
  });

使用已启用 Azure AI 搜索工具创建代理

将模型更改为项目中部署的模型。 可以在“模型”选项卡下的 Azure AI Foundry 中找到模型名称。还可以更改代理的名称和说明,以满足你的需求。


const agent = await client.agents.createAgent("gpt-4o-mini", {
  name: "my-agent",
  instructions: "You are a helpful agent",
  tools: [azureAISearchTool.definition],
  toolResources: azureAISearchTool.resources,
});
console.log(`Created agent, agent ID : ${agent.id}`);

向代理询问索引中的数据

创建代理后,请询问有关 Azure AI 搜索索引中的数据的问题。

// Create thread for communication
  const thread = await client.threads.create();
  console.log(`Created thread, thread ID: ${thread.id}`);

// Create message to thread
const message = await client.messages.create(
  thread.id,
  "user",
  "What is the temperature rating of the cozynights sleeping bag?",
);
console.log(`Created message, message ID : ${message.id}`);

// Create and process agent run in thread with tools
let run = await client.runs.create(thread.id, agent.id);
while (run.status === "queued" || run.status === "in_progress") {
  await delay(1000);
  run = await client.runs.get(thread.id, run.id);
}
if (run.status === "failed") {
  console.log(`Run failed:`, JSON.stringify(run, null, 2));
}
console.log(`Run finished with status: ${run.status}`);

// Fetch run steps to get the details of agent run
const runSteps = await client.runSteps.list(thread.id, run.id);

for await (const step of runSteps) {
  console.log(`Step ID: ${step.id}, Status: ${step.status}`);
  const stepDetails = step.stepDetails;
  if (isOutputOfType(stepDetails, "tool_calls")) {
    const toolCalls = stepDetails.toolCalls;
    for (const toolCall of toolCalls) {
      console.log(`Tool Call ID: ${toolCall.id}, Tool type: ${toolCall.type}`);
      if (isOutputOfType(toolCall, "azure_ai_search")) {
        {
          const azureAISearch = toolCall.azureAISearch;
          if (azureAISearch) {
            console.log(`Azure AI Search Tool Call input: ${azureAISearch.input}`);
            console.log(`Azure AI Search Tool Call output: ${azureAISearch.output}`);
          }
        }
      }
    }
  }
}
// Delete the assistant when done
await client.deleteAgent(agent.id);
console.log(`Deleted agent, agent ID: ${agent.id}`);

// Fetch and log all messages
const messagesIterator = client.messages.list(thread.id);
console.log(`Messages:`);

// Get the first message
for await (const m of messagesIterator) {
  if (m.content.length > 0) {
    const agentMessage = m.content[0];
    if (isOutputOfType(agentMessage, "text")) {
      const textContent = agentMessage;
      console.log(`Text Message Content - ${textContent.text.value}`);
    }
  }
  break; // Just process the first message
}

请按照 REST API 快速入门 为环境变量 AGENT_TOKENAZURE_AI_FOUNDRY_PROJECT_ENDPOINTAPI_VERSION 设置正确的值。

获取 Azure AI 搜索资源的连接 ID

若要获取连接 ID,请导航到 Azure AI Foundry 中的项目,然后单击 “已连接资源 ”选项卡,然后选择 Azure AI 搜索资源。

Azure AI Foundry 中 AI 搜索资源连接页的屏幕截图。

在 URL 中,可以看到 wsid=/subscription/your-subscription-id...,这是需要使用的连接 ID。 复制wsid=之后的所有内容。

AI 搜索资源连接的屏幕截图,以及如何复制连接 ID。

配置 Azure AI 搜索工具

使用上一步骤中获取的连接 ID,现在可以将 Azure AI 搜索工具配置为使用 Azure AI 搜索索引。

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/assistants?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
        "instructions": "You are a helpful agent.",
        "name": "my-agent",
        "tools": [
          {"type": "azure_ai_search"}
        ],
        "model": "gpt-4o-mini",
        "tool_resources": {
            "azure_ai_search": {
              "indexes": [
                  {
                      "index_connection_id": "/subscriptions/<your-subscription-id>/resourceGroups/<your-resource-group>/providers/Microsoft.MachineLearningServices/workspaces/<your-project-name>/connections/<your-azure-ai-search-connection-name>",
                      "index_name": "<your-index-name>",
                      "query_type": "semantic"
                  }
              ]
            }
        }
      }'

向代理询问索引中的数据

创建代理后,请询问有关 Azure AI 搜索索引中的数据的问题。

创建线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d ''

将用户问题添加到线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
      "role": "user",
      "content": "what are my health insurance plan coverage types?"
    }'

运行线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "assistant_id": "asst_abc123",
  }'

获取运行状态

curl --request GET \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs/run_abc123?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN"

检索代理响应

curl --request GET \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN"