次の方法で共有


トレースの検索と分析

検索可能なトレースを作成し、効果的にクエリを実行し、結果を分析して GenAI アプリケーションの動作に関する分析情報を得る方法について説明します。

クイック リファレンス

基本的な検索構文

# Search by status
mlflow.search_traces("attributes.status = 'OK'")
mlflow.search_traces("attributes.status = 'ERROR'")

# Search by time (milliseconds since epoch)
mlflow.search_traces("attributes.timestamp_ms > 1749006880539")
mlflow.search_traces("attributes.execution_time_ms > 5000")

# Search by tags
mlflow.search_traces("tags.environment = 'production'")
mlflow.search_traces("tags.`mlflow.traceName` = 'my_function'")

# Search by metadata
mlflow.search_traces("metadata.`mlflow.user` = 'alice@company.com'")

# Combined filters (AND only)
mlflow.search_traces(
    "attributes.status = 'OK' AND tags.environment = 'production'"
)

主要な規則

  • 常にプレフィックスを使用する: attributes.tags.、または metadata.
  • タグ名または属性名にドットがある場合のバックティック: tags.`mlflow.traceName`
  • 単一引用符のみ: 'value' ではない "value"
  • 時間のミリ秒: 日付ではなく1749006880539
  • AND のみ: OR サポートなし

検索可能なフィールド

フィールド 経路 オペレーター
ステータス attributes.status =!=
タイムスタンプ attributes.timestamp_ms =<<=>>=
期間 attributes.execution_time_ms =<<=>>=
タグ tags.* =!=
メタデータ metadata.* =!=

エンドツーエンドの例

:::note 前提条件

  1. MLflow と必要なパッケージをインストールする

    pip install --upgrade "mlflow[databricks]>=3.1.0" openai "databricks-connect>=16.1"
    
  2. 環境のセットアップのクイックスタートに従って、MLflow 実験を作成します。 :::

検索機能を示すサンプル トレースを作成します。

import time
import mlflow

# Define methods to be traced
@mlflow.trace()
def morning_greeting(name: str):
    time.sleep(1)
    # Add tag and metadata for better categorization
    mlflow.update_current_trace(
        tags={"person": name},
    )
    return f"Good morning {name}."


@mlflow.trace()
def evening_greeting(name: str):
    time.sleep(1)
    # Add tag with different values for comparison
    mlflow.update_current_trace(
        tags={"person": name},
    )
    return f"Good evening {name}."

@mlflow.trace()
def goodbye():
    # Add tag even for functions that might fail
    mlflow.update_current_trace(
        tags={"greeting_type": "goodbye"},
    )
    raise Exception("Cannot say goodbye")


# Execute the methods
morning_greeting("Tom")

# Get the timestamp in milliseconds
morning_time = int(time.time() * 1000)

evening_greeting("Mary")

# Execute goodbye, catching the exception
try:
    goodbye()
except Exception as e:
    print(f"Caught expected exception: {e}")
    pass

上記のコードでは、次のトレースが作成されます。

トレース

正しいフィールド プレフィックスを使用して、次のトレースを検索します。

# Search successful traces
traces = mlflow.search_traces(
    filter_string="attributes.status = 'OK'",
)
print(traces)
# 2 results

# Search failed traces
traces = mlflow.search_traces(
    filter_string="attributes.status = 'ERROR'",
)
print(traces)
# 1 result

# Search all traces in experiment
traces = mlflow.search_traces()
print(traces)
# 3 results

# Search by single tag
traces = mlflow.search_traces(filter_string="tags.person = 'Tom'")
print(traces)
# 1 result

# Complex search combining tags and status
traces = mlflow.search_traces(
    filter_string="tags.person = 'Tom' AND attributes.status = 'OK'"
)
print(traces)
# 1 result

# Search by timestamp
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {morning_time}")
print(traces)
# 1 result

API リファレンス

検索API

mlflow.search_traces()を使用して、実験のトレースを検索および分析します。

mlflow.search_traces(
    experiment_ids: Optional[List[str]] = None,          # Uses active experiment if not specified
    filter_string: Optional[str] = None,
    max_results: Optional[int] = None,
    order_by: Optional[List[str]] = None,
    extract_fields: Optional[List[str]] = None,          # DataFrame column extraction (pandas only)
    run_id: Optional[str] = None,                        # Filter traces by run ID
    return_type: Optional[Literal["pandas", "list"]] = None,  # Return type (default: pandas if available)
    model_id: Optional[str] = None,                      # Search traces by model ID
    sql_warehouse_id: Optional[str] = None               # Databricks SQL warehouse ID
) -> Union[pandas.DataFrame, List[Trace]]

パラメーターの詳細:

パラメーター 説明
experiment_ids 検索の範囲を指定する実験 ID の一覧。 指定しない場合、現在アクティブな実験全体で検索が実行されます。
filter_string 検索フィルター文字列。
max_results 希望するトレースの最大数。 None の場合、検索式に一致するすべてのトレースが返されます。
order_by order_by句の一覧。
extract_fields "span_name.[inputs\|outputs].field_name"または"span_name.[inputs\|outputs]"形式を使用してトレースから抽出するフィールドを指定します。
run_id 検索の範囲を指定する実行 ID。 アクティブな実行で作成されたトレースは実行に関連付けられます。また、実行 ID をフィルター処理してトレースを取得できます。 実行 ID でトレースをフィルター処理する方法については、次の例を参照してください。
return_type 戻り値の型。 次の戻り値の型がサポートされています。 pandas ライブラリがインストールされている場合、既定の戻り値の型は "pandas" です。 それ以外の場合、既定の戻り値の型は "list" です。
"pandas": 各行が 1 つのトレースを表し、各列がトレースのフィールド (trace_id、スパンなど) を表すトレースに関する情報を含む Pandas DataFrame を返します。
"list": :p y:class:Trace <mlflow.entities.Trace> オブジェクトのリストを返します。
model_id 指定した場合は、指定されたモデル ID に関連付けられているトレースを検索します。

MLflow では、 MlflowClient.search_traces()も提供されます。 ただし、 mlflow.search_traces() を使用することをお勧めします。改ページ位置のサポートを除き、より便利な既定値と DataFrame 出力やフィールド抽出などの追加機能を備えた機能のスーパーセットが提供されます。

検索可能なフィールドのリファレンス

Von Bedeutung

これらのフィールドの完全なリファレンスについては、 トレース データ モデルを参照してください。

フィールドの型 検索パス オペレーター 価値観 注記
メタデータ metadata.* =!= 詳細については、以下を参照してください。 文字列の等価性のみ
タグ tags.* =!= 詳細については、以下を参照してください。 文字列の等価性のみ
地位 attributes.status =!= OKERRORIN_PROGRESS 文字列の等価性のみ
名前 attributes.name =!= トレース名 文字列の等価性のみ
タイムスタンプ attributes.timestamp_ms =<<=>>= 作成時間 (エポック以降のミリ秒) 数値比較
実行時間 attributes.execution_time_ms =<<=>>= 実行時間 (ミリ秒) 数値比較

メタデータの詳細

フィルター処理には、次のメタデータ フィールドを使用できます。

  • metadata.mlflow.traceInputs: コンテンツを要求する
  • metadata.mlflow.traceOutputs: 応答コンテンツ
  • metadata.mlflow.sourceRun: ソース実行 ID
  • metadata.mlflow.modelId: モデル ID
  • metadata.mlflow.trace.sizeBytes: トレース サイズ (バイト単位)
  • metadata.mlflow.trace.tokenUsage: 集計されたトークン使用状況情報 (JSON 文字列)
  • metadata.mlflow.trace.user: アプリケーション要求のユーザー ID/名前
  • metadata.mlflow.trace.session: アプリケーション要求のセッション ID

タグの詳細

ユーザー定義タグに加えて、次のシステム定義タグを使用できます。

  • mlflow.traceName: トレースの名前
  • eval.requestId: mlflow.genai.evaluate() によって設定された評価要求 ID

フィルター構文の規則

  1. 必要なテーブル プレフィックス: 常に attributes.tags.、または metadata.
  2. ドットのバックティック: ドットを持つフィールドにはバックティックが必要です。 tags.`mlflow.traceName`
  3. 単一引用符のみ: 文字列値では、単一引用符を使用する必要があります。 'value'
  4. 大文字と小文字の区別: すべてのフィールド名と値は大文字と小文字を区別します
  5. AND のみ: OR 演算子はサポートされていません

構文で並べ替え

# Single field ordering
order_by=["attributes.timestamp_ms DESC"]
order_by=["attributes.execution_time_ms ASC"]

# Multiple field ordering (applied in sequence)
order_by=[
    "attributes.timestamp_ms DESC",
    "attributes.execution_time_ms ASC"
]

# Supported fields for ordering
# - attributes.timestamp_ms (and aliases)
# - attributes.execution_time_ms (and aliases)
# - attributes.status
# - attributes.name

一般的なパターン

# Status filtering
"attributes.status = 'OK'"
"attributes.status = 'ERROR'"

# Time-based queries
"attributes.timestamp_ms > 1749006880539"
"attributes.execution_time_ms > 5000"

# Tag searches
"tags.user_id = 'U001'"
"tags.`mlflow.traceName` = 'my_function'"

# Metadata queries
"metadata.`mlflow.user` = 'alice@company.com'"
"metadata.`mlflow.traceOutputs` != ''"

# Combined filters
"attributes.status = 'OK' AND tags.environment = 'production'"
"attributes.timestamp_ms > 1749006880539 AND attributes.execution_time_ms > 1000"

よくある落とし穴

❌ 間違った ✅ そうです 問題点
status = 'OK' attributes.status = 'OK' プレフィックスがありません
mlflow.user = 'alice' metadata.`mlflow.user` = 'alice' プレフィックスとバックティックが欠落している
timestamp > '2024-01-01' attributes.timestamp > 1704067200000 文字列ではなくミリ秒を使用する
tags.env = "prod" tags.env = 'prod' 単一引用符を使用する
status = 'OK' OR status = 'ERROR' 個別のクエリを使用する OR はサポートされていません

詳細な検索例

実行 ID で検索する

# Find all traces associated with a specific MLflow run
with mlflow.start_run() as run:
    # Your traced code here
    traced_result = my_traced_function()

# Search for traces from this run
run_traces = mlflow.search_traces(
    run_id=run.info.run_id,
    return_type="list"  # Get list of Trace objects
)

コントロールの戻り値の型

# Get results as pandas DataFrame (default if pandas is installed)
traces_df = mlflow.search_traces(
    filter_string="attributes.status = 'OK'",
    return_type="pandas"
)

# Get results as list of Trace objects
traces_list = mlflow.search_traces(
    filter_string="attributes.status = 'OK'",
    return_type="list"
)

# Access trace details from list
for trace in traces_list:
    print(f"Trace ID: {trace.info.trace_id}")
    print(f"Status: {trace.info.state}")
    print(f"Duration: {trace.info.execution_duration}")

モデル ID で検索する

# Find traces associated with a specific MLflow model
model_traces = mlflow.search_traces(
    model_id="my-model-123",
    filter_string="attributes.status = 'OK'"
)

# Analyze model performance
print(f"Found {len(model_traces)} successful traces for model")
print(f"Average latency: {model_traces['execution_time_ms'].mean():.2f}ms")

ステータスで検索

# Find successful traces
traces = mlflow.search_traces(filter_string="attributes.status = 'OK'")

# Find failed traces
traces = mlflow.search_traces(filter_string="attributes.status = 'ERROR'")

# Find in-progress traces
traces = mlflow.search_traces(filter_string="attributes.status = 'IN_PROGRESS'")

# Exclude errors
traces = mlflow.search_traces(filter_string="attributes.status != 'ERROR'")

トレース名で検索する

# Find traces with specific name (rarely used - legacy field)
traces = mlflow.search_traces(filter_string="attributes.name = 'foo'")

# Find traces excluding a specific name
traces = mlflow.search_traces(filter_string="attributes.name != 'test_trace'")

# Note: Most users should use tags.`mlflow.traceName` instead
traces = mlflow.search_traces(
    filter_string="tags.`mlflow.traceName` = 'process_request'"
)

タイムスタンプで検索

import time
from datetime import datetime

# Current time in milliseconds
current_time_ms = int(time.time() * 1000)

# Last 5 minutes
five_minutes_ago = current_time_ms - (5 * 60 * 1000)
traces = mlflow.search_traces(
    filter_string=f"attributes.timestamp_ms > {five_minutes_ago}"
)

# Specific date range
start_date = int(datetime(2024, 1, 1).timestamp() * 1000)
end_date = int(datetime(2024, 1, 31).timestamp() * 1000)
traces = mlflow.search_traces(
    filter_string=f"attributes.timestamp_ms > {start_date} AND attributes.timestamp_ms < {end_date}"
)

# Using timestamp aliases
traces = mlflow.search_traces(filter_string=f"attributes.timestamp > {five_minutes_ago}")

実行時間で検索

# Find slow traces (>5 seconds)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms > 5000")

# Find fast traces (<100ms)
traces = mlflow.search_traces(filter_string="attributes.execution_time_ms < 100")

# Performance range
traces = mlflow.search_traces(
    filter_string="attributes.execution_time_ms > 100 AND attributes.execution_time_ms < 1000"
)

# Using execution time aliases
traces = mlflow.search_traces(filter_string="attributes.latency > 1000")

タグで検索

# Custom tags (set via mlflow.update_current_trace)
traces = mlflow.search_traces(filter_string="tags.customer_id = 'C001'")
traces = mlflow.search_traces(filter_string="tags.environment = 'production'")
traces = mlflow.search_traces(filter_string="tags.version = 'v2.1.0'")

# MLflow system tags (require backticks)
traces = mlflow.search_traces(
    filter_string="tags.`mlflow.traceName` = 'process_chat_request'"
)
traces = mlflow.search_traces(
    filter_string="tags.`mlflow.artifactLocation` != ''"
)

メタデータによる検索

# Search by response content (exact match)
traces = mlflow.search_traces(
    filter_string="metadata.`mlflow.traceOutputs` = 'exact response text'"
)

# Find traces with any output
traces = mlflow.search_traces(
    filter_string="metadata.`mlflow.traceOutputs` != ''"
)

# Search by user
traces = mlflow.search_traces(
    filter_string="metadata.`mlflow.user` = 'alice@company.com'"
)

# Search by source file
traces = mlflow.search_traces(
    filter_string="metadata.`mlflow.source.name` = 'app.py'"
)

# Search by git information
traces = mlflow.search_traces(
    filter_string="metadata.`mlflow.source.git.branch` = 'main'"
)

AND を使用した複雑なフィルター

# Recent successful production traces
current_time_ms = int(time.time() * 1000)
one_hour_ago = current_time_ms - (60 * 60 * 1000)

traces = mlflow.search_traces(
    filter_string=f"attributes.status = 'OK' AND "
                 f"attributes.timestamp_ms > {one_hour_ago} AND "
                 f"tags.environment = 'production'"
)

# Fast traces from specific user
traces = mlflow.search_traces(
    filter_string="attributes.execution_time_ms < 100 AND "
                 "metadata.`mlflow.user` = 'alice@company.com'"
)

# Specific function with performance threshold
traces = mlflow.search_traces(
    filter_string="tags.`mlflow.traceName` = 'process_payment' AND "
                 "attributes.execution_time_ms > 1000"
)

順番の結果

# Most recent first
traces = mlflow.search_traces(
    filter_string="attributes.status = 'OK'",
    order_by=["attributes.timestamp_ms DESC"]
)

# Fastest first
traces = mlflow.search_traces(
    order_by=["attributes.execution_time_ms ASC"]
)

# Multiple sort criteria
traces = mlflow.search_traces(
    filter_string="attributes.status = 'OK'",
    order_by=[
        "attributes.timestamp_ms DESC",
        "attributes.execution_time_ms ASC"
    ]
)

DataFrame 操作

mlflow.search_tracesによって返される DataFrame には、次の列が含まれています。

traces_df = mlflow.search_traces()

# Default columns
print(traces_df.columns)
# ['request_id', 'trace', 'timestamp_ms', 'status', 'execution_time_ms',
#  'request', 'response', 'request_metadata', 'spans', 'tags']

スパン フィールドの抽出

# Extract specific span fields into DataFrame columns
traces = mlflow.search_traces(
    extract_fields=[
        "process_request.inputs.customer_id",
        "process_request.outputs",
        "validate_input.inputs",
        "generate_response.outputs.message"
    ]
)

# Use extracted fields for evaluation dataset
eval_data = traces.rename(columns={
    "process_request.inputs.customer_id": "customer",
    "generate_response.outputs.message": "ground_truth"
})

動的クエリの作成

def build_trace_filter(status=None, user=None, min_duration=None,
                      max_duration=None, tags=None, after_timestamp=None):
    """Build dynamic filter string from parameters"""
    conditions = []

    if status:
        conditions.append(f"attributes.status = '{status}'")

    if user:
        conditions.append(f"metadata.`mlflow.user` = '{user}'")

    if min_duration:
        conditions.append(f"attributes.execution_time_ms > {min_duration}")

    if max_duration:
        conditions.append(f"attributes.execution_time_ms < {max_duration}")

    if after_timestamp:
        conditions.append(f"attributes.timestamp_ms > {after_timestamp}")

    if tags:
        for key, value in tags.items():
            # Handle dotted tag names
            if '.' in key:
                conditions.append(f"tags.`{key}` = '{value}'")
            else:
                conditions.append(f"tags.{key} = '{value}'")

    return " AND ".join(conditions) if conditions else None

# Usage
filter_string = build_trace_filter(
    status="OK",
    user="alice@company.com",
    min_duration=100,
    tags={"environment": "production", "mlflow.traceName": "process_order"}
)

traces = mlflow.search_traces(filter_string=filter_string)

実際の例リファレンス

エラー監視

運用環境でのエラーの監視と分析:

import mlflow
import time
import pandas as pd

def monitor_errors(experiment_name: str, hours: int = 1):
    """Monitor errors in the last N hours."""

    # Calculate time window
    current_time_ms = int(time.time() * 1000)
    cutoff_time_ms = current_time_ms - (hours * 60 * 60 * 1000)

    # Find all errors
    failed_traces = mlflow.search_traces(
        filter_string=f"attributes.status = 'ERROR' AND "
                     f"attributes.timestamp_ms > {cutoff_time_ms}",
        order_by=["attributes.timestamp_ms DESC"]
    )

    if len(failed_traces) == 0:
        print(f"No errors found in the last {hours} hour(s)")
        return

    # Analyze error patterns
    print(f"Found {len(failed_traces)} errors in the last {hours} hour(s)\n")

    # Group by function name
    error_by_function = failed_traces.groupby('tags.mlflow.traceName').size()
    print("Errors by function:")
    print(error_by_function.to_string())

    # Show recent error samples
    print("\nRecent error samples:")
    for _, trace in failed_traces.head(5).iterrows():
        print(f"- {trace['request_preview'][:60]}...")
        print(f"  Function: {trace.get('tags.mlflow.traceName', 'unknown')}")
        print(f"  Time: {pd.to_datetime(trace['timestamp_ms'], unit='ms')}")
        print()

    return failed_traces

パフォーマンス プロファイリング

パフォーマンス特性を分析し、ボトルネックを特定します。

def profile_performance(function_name: str = None, percentiles: list = [50, 95, 99]):
    """Profile performance metrics for traces."""

    # Build filter
    filter_parts = []
    if function_name:
        filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")

    filter_string = " AND ".join(filter_parts) if filter_parts else None

    # Get traces
    traces = mlflow.search_traces(filter_string=filter_string)

    if len(traces) == 0:
        print("No traces found")
        return

    # Calculate percentiles
    perf_stats = traces['execution_time_ms'].describe(percentiles=[p/100 for p in percentiles])

    print(f"Performance Analysis ({len(traces)} traces)")
    print("=" * 40)
    for p in percentiles:
        print(f"P{p}: {perf_stats[f'{p}%']:.1f}ms")
    print(f"Mean: {perf_stats['mean']:.1f}ms")
    print(f"Max: {perf_stats['max']:.1f}ms")

    # Find outliers (>P99)
    if 99 in percentiles:
        p99_threshold = perf_stats['99%']
        outliers = traces[traces['execution_time_ms'] > p99_threshold]

        if len(outliers) > 0:
            print(f"\nOutliers (>{p99_threshold:.0f}ms): {len(outliers)} traces")
            for _, trace in outliers.head(3).iterrows():
                print(f"- {trace['execution_time_ms']:.0f}ms: {trace['request_preview'][:50]}...")

    return traces

ユーザー アクティビティ分析

ユーザーの動作パターンを追跡および分析します。

def analyze_user_activity(user_id: str, days: int = 7):
    """Analyze activity patterns for a specific user."""

    cutoff_ms = int((time.time() - days * 86400) * 1000)

    traces = mlflow.search_traces(
        filter_string=f"metadata.`mlflow.user` = '{user_id}' AND "
                     f"attributes.timestamp_ms > {cutoff_ms}",
        order_by=["attributes.timestamp_ms DESC"]
    )

    if len(traces) == 0:
        print(f"No activity found for user {user_id}")
        return

    print(f"User {user_id} Activity Report ({days} days)")
    print("=" * 50)
    print(f"Total requests: {len(traces)}")

    # Daily activity
    traces['date'] = pd.to_datetime(traces['timestamp_ms'], unit='ms').dt.date
    daily_activity = traces.groupby('date').size()
    print(f"\nDaily activity:")
    print(daily_activity.to_string())

    # Query categories
    if 'tags.query_category' in traces.columns:
        categories = traces['tags.query_category'].value_counts()
        print(f"\nQuery categories:")
        print(categories.to_string())

    # Performance stats
    print(f"\nPerformance:")
    print(f"Average response time: {traces['execution_time_ms'].mean():.1f}ms")
    print(f"Error rate: {(traces['status'] == 'ERROR').mean() * 100:.1f}%")

    return traces

ベスト プラクティス

1. 一貫したタグ付け戦略を設計する

組織のタグ付け分類を作成します。

class TraceTagging:
    """Standardized tagging strategy for traces."""

    # Required tags for all traces
    REQUIRED_TAGS = ["environment", "version", "service_name"]

    # Category mappings
    CATEGORIES = {
        "user_management": ["login", "logout", "profile_update"],
        "content_generation": ["summarize", "translate", "rewrite"],
        "data_retrieval": ["search", "fetch", "query"]
    }

    @staticmethod
    def tag_trace(operation: str, **kwargs):
        """Apply standardized tags to current trace."""
        tags = {
            "operation": operation,
            "timestamp": datetime.now().isoformat(),
            "service_name": "genai-platform"
        }

        # Add category based on operation
        for category, operations in TraceTagging.CATEGORIES.items():
            if operation in operations:
                tags["category"] = category
                break

        # Add custom tags
        tags.update(kwargs)

        # Validate required tags
        for required in TraceTagging.REQUIRED_TAGS:
            if required not in tags:
                tags[required] = "unknown"

        mlflow.update_current_trace(tags=tags)
        return tags

2. 再利用可能な検索ユーティリティを構築する

class TraceSearcher:
    """Reusable trace search utilities."""

    def __init__(self, experiment_ids: list = None):
        self.experiment_ids = experiment_ids

    def recent_errors(self, hours: int = 1) -> pd.DataFrame:
        """Get recent error traces."""
        cutoff = int((time.time() - hours * 3600) * 1000)
        return mlflow.search_traces(
            experiment_ids=self.experiment_ids,
            filter_string=f"attributes.status = 'ERROR' AND "
                         f"attributes.timestamp_ms > {cutoff}",
            order_by=["attributes.timestamp_ms DESC"]
        )

    def slow_operations(self, threshold_ms: int = 5000) -> pd.DataFrame:
        """Find operations slower than threshold."""
        return mlflow.search_traces(
            experiment_ids=self.experiment_ids,
            filter_string=f"attributes.execution_time_ms > {threshold_ms}",
            order_by=["attributes.execution_time_ms DESC"]
        )

    def by_user(self, user_id: str, days: int = 7) -> pd.DataFrame:
        """Get traces for a specific user."""
        cutoff = int((time.time() - days * 86400) * 1000)
        return mlflow.search_traces(
            experiment_ids=self.experiment_ids,
            filter_string=f"tags.user_id = '{user_id}' AND "
                         f"attributes.timestamp_ms > {cutoff}",
            order_by=["attributes.timestamp_ms DESC"]
        )

    def by_category(self, category: str, status: str = None) -> pd.DataFrame:
        """Get traces by category with optional status filter."""
        filters = [f"tags.category = '{category}'"]
        if status:
            filters.append(f"attributes.status = '{status}'")

        return mlflow.search_traces(
            experiment_ids=self.experiment_ids,
            filter_string=" AND ".join(filters)
        )

    def performance_report(self, function_name: str = None) -> dict:
        """Generate performance report."""
        filter_parts = []
        if function_name:
            filter_parts.append(f"tags.`mlflow.traceName` = '{function_name}'")

        filter_string = " AND ".join(filter_parts) if filter_parts else None
        traces = mlflow.search_traces(
            experiment_ids=self.experiment_ids,
            filter_string=filter_string
        )

        if len(traces) == 0:
            return {"error": "No traces found"}

        return {
            "total_traces": len(traces),
            "error_rate": (traces['status'] == 'ERROR').mean(),
            "avg_duration_ms": traces['execution_time_ms'].mean(),
            "p50_duration_ms": traces['execution_time_ms'].quantile(0.5),
            "p95_duration_ms": traces['execution_time_ms'].quantile(0.95),
            "p99_duration_ms": traces['execution_time_ms'].quantile(0.99)
        }

# Usage example
searcher = TraceSearcher()
errors = searcher.recent_errors(hours=24)
slow_ops = searcher.slow_operations(threshold_ms=10000)
user_traces = searcher.by_user("U001", days=30)
report = searcher.performance_report("process_request")

次のステップ