次の方法で共有


ログ記録の評価

評価は、MLflow の品質評価と改善のために、トレースやスパンに構造化されたフィードバック、スコア、またはグラウンド トゥルースを付与します。

MLflow には、次の 2 つの API が用意されています。

  • mlflow.log_feedback() - アプリの実際の出力または中間ステップを評価する フィードバック をログに記録します (例: "応答は良好でしたか?"、評価、コメント)
  • mlflow.log_assessment() - あらゆる評価の種類に対応する一般的な API、アプリが生成する必要がある望ましい結果または正しい結果 (基準値) を定義する 期待 値を含む

このリファレンスでは、これらの API を使用する方法の包括的な例を示します。

フィードバックおよび期待値データモデルの詳細については、トレースデータモデルをご参照ください。

例示

次の例を実行すると、次に示すようにトレースが生成されます。

概要で評価を表示する

import mlflow
from mlflow.entities.assessment import (
    AssessmentSource,
    AssessmentSourceType,
    AssessmentError,
)


@mlflow.trace
def my_app(input: str) -> str:
    return input + "_output"


# Create a sample trace to demonstrate assessment logging
my_app(input="hello")

trace_id = mlflow.get_last_active_trace_id()

# Handle case where trace_id might be None
if trace_id is None:
    raise ValueError("No active trace found. Make sure to run a traced function first.")

print(f"Using trace_id: {trace_id}")


# =============================================================================
# LOG_FEEDBACK - Evaluating actual outputs and performance
# =============================================================================

# Example 1: Human rating (integer scale)
# Use case: Domain experts rating response quality on a 1-5 scale
mlflow.log_feedback(
    trace_id=trace_id,
    name="human_rating",
    value=4,  # int - rating scale feedback
    rationale="Human evaluator rating",
    source=AssessmentSource(
        source_type=AssessmentSourceType.HUMAN,
        source_id="evaluator@company.com",
    ),
)

# Example 2: LLM judge score (float for precise scoring)
# Use case: Automated quality assessment using LLM-as-a-judge
mlflow.log_feedback(
    trace_id=trace_id,
    name="llm_judge_score",
    value=0.85,  # float - precise scoring from 0.0 to 1.0
    rationale="LLM judge evaluation",
    source=AssessmentSource(
        source_type=AssessmentSourceType.LLM_JUDGE,
        source_id="gpt-4o-mini",
    ),
    metadata={"temperature": "0.1", "model_version": "2024-01"},
)

# Example 3: Binary feedback (boolean for yes/no assessments)
# Use case: Simple thumbs up/down or correct/incorrect evaluations
mlflow.log_feedback(
    trace_id=trace_id,
    name="is_helpful",
    value=True,  # bool - binary assessment
    rationale="Boolean assessment of helpfulness",
    source=AssessmentSource(
        source_type=AssessmentSourceType.HUMAN,
        source_id="reviewer@company.com",
    ),
)

# Example 4: Multi-category feedback (list for multiple classifications)
# Use case: Automated categorization or multi-label classification
mlflow.log_feedback(
    trace_id=trace_id,
    name="automated_categories",
    value=["helpful", "accurate", "concise"],  # list - multiple categories
    rationale="Automated categorization",
    source=AssessmentSource(
        source_type=AssessmentSourceType.CODE,
        source_id="classifier_v1.2",
    ),
)

# Example 5: Complex analysis with metadata (when you need structured context)
# Use case: Detailed automated analysis with multiple dimensions stored in metadata
mlflow.log_feedback(
    trace_id=trace_id,
    name="response_analysis_score",
    value=4.2,  # single score instead of dict - keeps value simple
    rationale="Analysis: 150 words, positive sentiment, includes examples, confidence 0.92",
    source=AssessmentSource(
        source_type=AssessmentSourceType.CODE,
        source_id="analyzer_v2.1",
    ),
    metadata={  # Use metadata for structured details
        "word_count": "150",
        "sentiment": "positive",
        "has_examples": "true",
        "confidence": "0.92",
    },
)

# Example 6: Error handling when evaluation fails
# Use case: Logging when automated evaluators fail due to API limits, timeouts, etc.
mlflow.log_feedback(
    trace_id=trace_id,
    name="failed_evaluation",
    source=AssessmentSource(
        source_type=AssessmentSourceType.LLM_JUDGE,
        source_id="gpt-4o",
    ),
    error=AssessmentError(  # Use error field when evaluation fails
        error_code="RATE_LIMIT_EXCEEDED",
        error_message="API rate limit exceeded during evaluation",
    ),
    metadata={"retry_count": "3", "error_timestamp": "2024-01-15T10:30:00Z"},
)

# =============================================================================
# LOG_EXPECTATION - Defining ground truth and desired outcomes
# =============================================================================

# Example 1: Simple text expectation (most common pattern)
# Use case: Defining the ideal response for factual questions
mlflow.log_expectation(
    trace_id=trace_id,
    name="expected_response",
    value="The capital of France is Paris.",  # Simple string - the "correct" answer
    source=AssessmentSource(
        source_type=AssessmentSourceType.HUMAN,
        source_id="content_curator@example.com",
    ),
)

# Example 2: Complex structured expectation (advanced pattern)
# Use case: Defining detailed requirements for response structure and content
mlflow.log_expectation(
    trace_id=trace_id,
    name="expected_response_structure",
    value={  # Complex dict - detailed specification of ideal response
        "entities": {
            "people": ["Marie Curie", "Pierre Curie"],
            "locations": ["Paris", "France"],
            "dates": ["1867", "1934"],
        },
        "key_facts": [
            "First woman to win Nobel Prize",
            "Won Nobel Prizes in Physics and Chemistry",
            "Discovered radium and polonium",
        ],
        "response_requirements": {
            "tone": "informative",
            "length_range": {"min": 100, "max": 300},
            "include_examples": True,
            "citations_required": False,
        },
    },
    source=AssessmentSource(
        source_type=AssessmentSourceType.HUMAN,
        source_id="content_strategist@example.com",
    ),
    metadata={
        "content_type": "biographical_summary",
        "target_audience": "general_public",
        "fact_check_date": "2024-01-15",
    },
)

# Example 3: Multiple acceptable answers (list pattern)
# Use case: When there are several valid ways to express the same fact
mlflow.log_expectation(
    trace_id=trace_id,
    name="expected_facts",
    value=[  # List of acceptable variations of the correct answer
        "Paris is the capital of France",
        "The capital city of France is Paris",
        "France's capital is Paris",
    ],
    source=AssessmentSource(
        source_type=AssessmentSourceType.HUMAN,
        source_id="qa_team@example.com",
    ),
)

次のステップ