Nota
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
Información generalOverview
Ejecute trabajos de análisis de macrodatos con capacidad de escalado a conjuntos de datos masivos con Azure Data Lake Analytics.Run big data analysis jobs that scale to massive data sets with Azure Data Lake Analytics.
Instalación de las bibliotecasInstall the libraries
API de administraciónManagement API
Use la API de administración para administrar cuentas, trabajos, directivas y catálogos de Data Lake Analytics.Use the management API to manage Data Lake Analytics accounts, jobs, policies, and catalogs.
pip install azure-mgmt-datalake-analytics
EjemploExample
Este es un ejemplo de cómo crear una cuenta de Data Lake Analytics y enviar un trabajo.This is an example of how to create a Data Lake Analytics account and submit a job.
## Required for Azure Resource Manager
from azure.mgmt.resource.resources import ResourceManagementClient
from azure.mgmt.resource.resources.models import ResourceGroup
## Required for Azure Data Lake Store account management
from azure.mgmt.datalake.store import DataLakeStoreAccountManagementClient
from azure.mgmt.datalake.store.models import DataLakeStoreAccount
## Required for Azure Data Lake Store filesystem management
from azure.datalake.store import core, lib, multithread
## Required for Azure Data Lake Analytics account management
from azure.mgmt.datalake.analytics.account import DataLakeAnalyticsAccountManagementClient
from azure.mgmt.datalake.analytics.account.models import DataLakeAnalyticsAccount, DataLakeStoreAccountInfo
## Required for Azure Data Lake Analytics job management
from azure.mgmt.datalake.analytics.job import DataLakeAnalyticsJobManagementClient
from azure.mgmt.datalake.analytics.job.models import JobInformation, JobState, USqlJobProperties
subid= '<Azure Subscription ID>'
rg = '<Azure Resource Group Name>'
___location = '<Location>' # i.e. 'eastus2'
adls = '<Azure Data Lake Store Account Name>'
adls = '<Azure Data Lake Analytics Account Name>'
# Create the clients
resourceClient = ResourceManagementClient(credentials, subid)
adlaAcctClient = DataLakeAnalyticsAccountManagementClient(credentials, subid)
adlaJobClient = DataLakeAnalyticsJobManagementClient( credentials, 'azuredatalakeanalytics.net')
# Create resource group
armGroupResult = resourceClient.resource_groups.create_or_update(rg, ResourceGroup(___location=___location))
# Create a store account
adlaAcctResult = adlaAcctClient.account.create(
rg,
adla,
DataLakeAnalyticsAccount(
___location=___location,
default_data_lake_store_account=adls,
data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
)
).wait()
# Create an ADLA account
adlaAcctResult = adlaAcctClient.account.create(
rg,
adla,
DataLakeAnalyticsAccount(
___location=___location,
default_data_lake_store_account=adls,
data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
)
).wait()
# Submit a job
script = """
@a =
SELECT * FROM
(VALUES
("Contoso", 1500.0),
("Woodgrove", 2700.0)
) AS
D( customer, amount );
OUTPUT @a
TO "/data.csv"
USING Outputters.Csv();
"""
jobId = str(uuid.uuid4())
jobResult = adlaJobClient.job.create(
adla,
jobId,
JobInformation(
name='Sample Job',
type='USql',
properties=USqlJobProperties(script=script)
)
)
EjemplosSamples
Administración de Azure Data Lake AnalyticsManage Azure Data Lake Anyalytics