Share via


MLflow Tracing Integrations

MLflow Tracing is integrated with a wide array of popular Generative AI libraries and frameworks, offering a one-line automatic tracing experience for all of them. This allows you to gain immediate observability into your GenAI applications with minimal setup.

Automatic tracing captures your application's logic and intermediate steps, such as LLM calls, tool usage, and agent interactions, based on your implementation of the specific library or SDK.

For a deeper dive into how automatic tracing works, its prerequisites, and examples of combining it with manual tracing, please see the main Automatic Tracing guide. The quick examples below highlight some top integrations. Detailed guides for each supported library, covering prerequisites, advanced examples, and specific behaviors, are available on their respective pages in this section.

Top Integrations at a Glance

Here are quick-start examples for some of the most commonly used integrations. Click on a tab to see a basic usage example. For detailed prerequisites and more advanced scenarios for each, please visit their dedicated integration pages (linked from the tabs or the list below).

OpenAI

import mlflow
import openai

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

# Enable auto-tracing for OpenAI
mlflow.openai.autolog()

# Set up MLflow tracking
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/openai-tracing-demo")

openai_client = openai.OpenAI()

messages = [
    {
        "role": "user",
        "content": "What is the capital of France?",
    }
]

response = openai_client.chat.completions.create(
    model="gpt-4o-mini",
    messages=messages,
    temperature=0.1,
    max_tokens=100,
)
# View trace in MLflow UI

Full OpenAI Integration Guide

LangChain

import mlflow
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.langchain.autolog()

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langchain-tracing-demo")

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.7, max_tokens=1000)
prompt = PromptTemplate.from_template("Tell me a joke about {topic}.")
chain = prompt | llm | StrOutputParser()

chain.invoke({"topic": "artificial intelligence"})
# View trace in MLflow UI

Full LangChain Integration Guide

LangGraph

import mlflow
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.langchain.autolog() # LangGraph uses LangChain's autolog

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langgraph-tracing-demo")

@tool
def get_weather(city: str):
    """Use this to get weather information."""
    return f"It might be cloudy in {city}"

llm = ChatOpenAI(model="gpt-4o-mini")
graph = create_react_agent(llm, [get_weather])
result = graph.invoke({"messages": [("user", "what is the weather in sf?")]})
# View trace in MLflow UI

Full LangGraph Integration Guide

Anthropic

import mlflow
import anthropic
import os

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.anthropic.autolog()

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/anthropic-tracing-demo")

client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
message = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=1024,
    messages=[{"role": "user", "content": "Hello, Claude"}],
)
# View trace in MLflow UI

Full Anthropic Integration Guide

DSPy

import mlflow
import dspy

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.dspy.autolog()

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/dspy-tracing-demo")

lm = dspy.LM("openai/gpt-4o-mini") # Assumes OPENAI_API_KEY is set
dspy.configure(lm=lm)

class SimpleSignature(dspy.Signature):
    input_text: str = dspy.InputField()
    output_text: str = dspy.OutputField()

program = dspy.Predict(SimpleSignature)
result = program(input_text="Summarize MLflow Tracing.")
# View trace in MLflow UI

Full DSPy Integration Guide

Databricks

import mlflow
import os
from openai import OpenAI # Databricks FMAPI uses OpenAI client

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.openai.autolog() # Traces Databricks FMAPI via OpenAI client

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/databricks-fmapi-tracing")

client = OpenAI(
    api_key=os.environ.get("DATABRICKS_TOKEN"),
    base_url=f"{os.environ.get('DATABRICKS_HOST')}/serving-endpoints"
)
response = client.chat.completions.create(
    model="databricks-llama-4-maverick",
    messages=[{"role": "user", "content": "Key features of MLflow?"}],
)
# View trace in MLflow UI

Full Databricks Integration Guide

Bedrock

import mlflow
import boto3

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.bedrock.autolog()

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/bedrock-tracing-demo")

bedrock = boto3.client(
    service_name="bedrock-runtime",
    region_name="us-east-1" # Replace with your region
)
response = bedrock.converse(
    modelId="anthropic.claude-3-5-sonnet-20241022-v2:0",
    messages=[{"role": "user", "content": "Hello World in one line."}]
)
# View trace in MLflow UI

Full Bedrock Integration Guide

AutoGen

import mlflow
from autogen import ConversableAgent
import os

# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"

mlflow.autogen.autolog()

mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/autogen-tracing-demo")

config_list = [{"model": "gpt-4o-mini", "api_key": os.environ.get("OPENAI_API_KEY")}]
assistant = ConversableAgent("assistant", llm_config={"config_list": config_list})
user_proxy = ConversableAgent("user_proxy", human_input_mode="NEVER", code_execution_config=False)

user_proxy.initiate_chat(assistant, message="What is 2+2?")
# View trace in MLflow UI

Full AutoGen Integration Guide

Enabling Multiple Auto Tracing Integrations

As GenAI applications often combine multiple libraries, MLflow Tracing allows you to enable auto-tracing for several integrations simultaneously, providing a unified tracing experience.

For example, to enable both LangChain and direct OpenAI tracing:

import mlflow

# Enable MLflow Tracing for both LangChain and OpenAI
mlflow.langchain.autolog()
mlflow.openai.autolog()

# Your code using both LangChain and OpenAI directly...
# ... an example can be found on the Automatic Tracing page ...

MLflow will generate a single, cohesive trace that combines steps from both LangChain and direct OpenAI LLM calls, allowing you to inspect the complete flow. More examples of combining integrations can be found on the Automatic Tracing page.

Disabling Auto Tracing

Auto tracing for any specific library can be disabled by calling mlflow.<library>.autolog(disable=True). To disable all autologging integrations at once, use mlflow.autolog(disable=True).

import mlflow

# Disable for a specific library
mlflow.openai.autolog(disable=True)

# Disable all autologging
mlflow.autolog(disable=True)