Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Azure AI Agents supports using the Code Interpreter tool, which allows an agent to write and run code within a secure, sandboxed execution environment. This enables the agent to perform tasks such as data analysis, mathematical calculations, or file manipulation based on user requests. This article provides step-by-step instructions and code samples for enabling and utilizing the Code Interpreter tool with your Azure AI Agent.
Using the code interpreter tool with an agent
You can add the code interpreter tool to an agent programmatically using the code examples listed at the top of this article, or the Azure AI Foundry portal. If you want to use the portal:
In the Agents screen for your agent, scroll down the Setup pane on the right to action. Then select Add.
Select Code interpreter and follow the prompts to add the tool.
You can optionally upload files for your agent to read and interpret information from datasets, generate code, and create graphs and charts using your data.
Initialization
The code begins by setting up the necessary imports and initializing the AI Project client:
import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import CodeInterpreterTool
# Create an Azure AI Client from an endpoint, copied from your Azure AI Foundry project.
# You need to login to Azure subscription via Azure CLI and set the environment variables
project_endpoint = os.environ["PROJECT_ENDPOINT"] # Ensure the PROJECT_ENDPOINT environment variable is set
# Create an AIProjectClient instance
project_client = AIProjectClient(
endpoint=project_endpoint,
credential=DefaultAzureCredential(), # Use Azure Default Credential for authentication
)
File Upload
The sample uploads a data file for analysis:
file = project_client.agents.upload_file_and_poll(
file_path="nifty_500_quarterly_results.csv",
purpose=FilePurpose.AGENTS
)
Code Interpreter Setup
The Code Interpreter tool is initialized with the uploaded file:
code_interpreter = CodeInterpreterTool(file_ids=[file.id])
Agent Creation
An agent is created with the Code Interpreter capabilities:
agent = project_client.agents.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are helpful agent",
tools=code_interpreter.definitions,
tool_resources=code_interpreter.resources,
)
Thread Management
The code creates a conversation thread and initial message:
thread = project_client.agents.threads.create()
message = project_client.agents.messages.create(
thread_id=thread.id,
role=MessageRole.USER,
content="Could you please create bar chart in TRANSPORTATION sector for the operating profit from the uploaded csv file and provide file to me?",
)
Message Processing
A run is created to process the message and execute code:
run = project_client.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
File Handling
The code handles the output files and annotations:
messages = project_client.agents.messages.list(thread_id=thread.id)
# Save generated image files
for image_content in messages.image_contents:
file_id = image_content.image_file.file_id
file_name = f"{file_id}_image_file.png"
project_client.agents.save_file(file_id=file_id, file_name=file_name)
# Process file path annotations
for file_path_annotation in messages.file_path_annotations:
print(f"File Paths:")
print(f"Type: {file_path_annotation.type}")
print(f"Text: {file_path_annotation.text}")
print(f"File ID: {file_path_annotation.file_path.file_id}")
Cleanup
After completing the interaction, the code properly cleans up resources:
project_client.agents.delete_file(file.id)
project_client.agents.delete_agent(agent.id)
This ensures proper resource management and prevents unnecessary resource consumption.
Create a client and agent
First, set up the configuration using appsettings.json
, create a PersistentAgentsClient
, and then create a PersistentAgent
with the Code Interpreter tool enabled.
using Azure;
using Azure.AI.Agents.Persistent;
using Azure.Identity;
using Microsoft.Extensions.Configuration;
using System.Diagnostics;
IConfigurationRoot configuration = new ConfigurationBuilder()
.SetBasePath(AppContext.BaseDirectory)
.AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
.Build();
var projectEndpoint = configuration["ProjectEndpoint"];
var modelDeploymentName = configuration["ModelDeploymentName"];
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "My Friendly Test Agent",
instructions: "You politely help with math questions. Use the code interpreter tool when asked to visualize numbers.",
tools: [new CodeInterpreterToolDefinition()]
);
Create a thread and add a message
Next, create a PersistentAgentThread
for the conversation and add the initial user message.
PersistentAgentThread thread = client.Threads.CreateThread();
client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"Hi, Agent! Draw a graph for a line with a slope of 4 and y-intercept of 9.");
Create and monitor a run
Then, create a ThreadRun
for the thread and agent. Poll the run's status until it completes or requires action.
ThreadRun run = client.Runs.CreateRun(
thread.Id,
agent.Id,
additionalInstructions: "Please address the user as Jane Doe. The user has a premium account.");
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress
|| run.Status == RunStatus.RequiresAction);
Process the results and handle files
Once the run is finished, retrieve all messages from the thread. Iterate through the messages to display text content and handle any generated image files by saving them locally and opening them.
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending);
foreach (PersistentThreadMessage threadMessage in messages)
{
foreach (MessageContent content in threadMessage.ContentItems)
{
switch (content)
{
case MessageTextContent textItem:
Console.WriteLine($"[{threadMessage.Role}]: {textItem.Text}");
break;
case MessageImageFileContent imageFileContent:
Console.WriteLine($"[{threadMessage.Role}]: Image content file ID = {imageFileContent.FileId}");
BinaryData imageContent = client.Files.GetFileContent(imageFileContent.FileId);
string tempFilePath = Path.Combine(AppContext.BaseDirectory, $"{Guid.NewGuid()}.png");
File.WriteAllBytes(tempFilePath, imageContent.ToArray());
client.Files.DeleteFile(imageFileContent.FileId);
ProcessStartInfo psi = new()
{
FileName = tempFilePath,
UseShellExecute = true
};
Process.Start(psi);
break;
}
}
}
Clean up resources
Finally, delete the thread and the agent to clean up the resources created in this sample.
client.Threads.DeleteThread(threadId: thread.Id);
client.Administration.DeleteAgent(agentId: agent.Id);
Create a project client
To use code interpreter, first you need to create a project client, which will contain an endpoint to your AI project, and will be used to authenticate API calls.
const { AgentsClient, isOutputOfType, ToolUtility } = require("@azure/ai-agents");
const { delay } = require("@azure/core-util");
const { DefaultAzureCredential } = require("@azure/identity");
const fs = require("fs");
const path = require("node:path");
require("dotenv/config");
const projectEndpoint = process.env["PROJECT_ENDPOINT"];
// Create an Azure AI Client
const client = new AgentsClient(projectEndpoint, new DefaultAzureCredential());
Upload a File
Files can be uploaded and then referenced by agents or messages. Once it's uploaded it can be added to the tool utility for referencing.
// Upload file and wait for it to be processed
const filePath = "./data/nifty500QuarterlyResults.csv";
const localFileStream = fs.createReadStream(filePath);
const localFile = await client.files.upload(localFileStream, "assistants", {
fileName: "localFile",
});
console.log(`Uploaded local file, file ID : ${localFile.id}`);
Create an Agent with the Code Interpreter Tool
// Create code interpreter tool
const codeInterpreterTool = ToolUtility.createCodeInterpreterTool([localFile.id]);
// Notice that CodeInterpreter must be enabled in the agent creation, otherwise the agent will not be able to see the file attachment
const agent = await client.createAgent("gpt-4o", {
name: "my-agent",
instructions: "You are a helpful agent",
tools: [codeInterpreterTool.definition],
toolResources: codeInterpreterTool.resources,
});
console.log(`Created agent, agent ID: ${agent.id}`);
Create a thread, message, and get the agent response
// Create a thread
const thread = await client.threads.create();
console.log(`Created thread, thread ID: ${thread.id}`);
// Create a message
const message = await client.messages.create(
thread.id,
"user",
"Could you please create a bar chart in the TRANSPORTATION sector for the operating profit from the uploaded CSV file and provide the file to me?",
{
attachments: [
{
fileId: localFile.id,
tools: [codeInterpreterTool.definition],
},
],
},
);
console.log(`Created message, message ID: ${message.id}`);
// Create and execute a run
let run = await client.runs.create(thread.id, agent.id);
while (run.status === "queued" || run.status === "in_progress") {
await delay(1000);
run = await client.runs.get(thread.id, run.id);
}
if (run.status === "failed") {
// Check if you got "Rate limit is exceeded.", then you want to get more quota
console.log(`Run failed: ${run.lastError}`);
}
console.log(`Run finished with status: ${run.status}`);
// Delete the original file from the agent to free up space (note: this does not delete your version of the file)
await client.files.delete(localFile.id);
console.log(`Deleted file, file ID: ${localFile.id}`);
// Print the messages from the agent
const messagesIterator = client.messages.list(thread.id);
const allMessages = [];
for await (const m of messagesIterator) {
allMessages.push(m);
}
console.log("Messages:", allMessages);
// Get most recent message from the assistant
const assistantMessage = allMessages.find((msg) => msg.role === "assistant");
if (assistantMessage) {
const textContent = assistantMessage.content.find((content) => isOutputOfType(content, "text"));
if (textContent) {
console.log(`Last message: ${textContent.text.value}`);
}
}
// Save the newly created file
console.log(`Saving new files...`);
const imageFile = allMessages[0].content[0].imageFile;
console.log(`Image file ID : ${imageFile.fileId}`);
const imageFileName = path.resolve(
"./data/" + (await client.files.get(imageFile.fileId)).filename + "ImageFile.png",
);
const fileContent = await (await client.files.getContent(imageFile.fileId).asNodeStream()).body;
if (fileContent) {
const chunks = [];
for await (const chunk of fileContent) {
chunks.push(Buffer.isBuffer(chunk) ? chunk : Buffer.from(chunk));
}
const buffer = Buffer.concat(chunks);
fs.writeFileSync(imageFileName, buffer);
} else {
console.error("Failed to retrieve file content: fileContent is undefined");
}
console.log(`Saved image file to: ${imageFileName}`);
// Iterate through messages and print details for each annotation
console.log(`Message Details:`);
allMessages.forEach((m) => {
console.log(`File Paths:`);
console.log(`Type: ${m.content[0].type}`);
if (isOutputOfType(m.content[0], "text")) {
const textContent = m.content[0];
console.log(`Text: ${textContent.text.value}`);
}
console.log(`File ID: ${m.id}`);
});
// Delete the agent once done
await client.deleteAgent(agent.id);
console.log(`Deleted agent, agent ID: ${agent.id}`);
Follow the REST API Quickstart to set the right values for the environment variables AGENT_TOKEN
, AZURE_AI_FOUNDRY_PROJECT_ENDPOINT
and API_VERSION
.
Upload a file
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/files?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-F purpose="assistants" \
-F file="@c:\\path_to_file\\file.csv"
Create an agent with the code interpreter tool
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/assistants?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"instructions": "You are an AI assistant that can write code to help answer math questions.",
"tools": [
{ "type": "code_interpreter" }
],
"model": "gpt-4o-mini",
"tool_resources"{
"code interpreter": {
"file_ids": ["assistant-1234"]
}
}
}'
Create a thread
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d ''
Add a user question to the thread
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"role": "user",
"content": "I need to solve the equation `3x + 11 = 14`. Can you help me?"
}'
Run the thread
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"assistant_id": "asst_abc123",
}'
Retrieve the status of the run
curl --request GET \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs/run_abc123?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN"
Retrieve the agent response
curl --request GET \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN"