
A tensor formalism for computer science
Jon Bratseth

bratseth@verizonmedia.com
Verizon Media

Trondheim, Norway

Håvard Pettersen
havard.pettersen@verizonmedia.com

Verizon Media
Trondheim, Norway

Lester Solbakken
lesters@verizonmedia.com

Verizon Media
Trondheim, Norway

Abstract
Over recent years, tensors have emerged as the preferred
data structure for model representation and computation
in machine learning. However, current tensor models suffer
from a lack of a formal basis, where the tensors are treated
as arbitrary multidimensional data processed by a large and
ever-growing collection of functions added ad hoc. In this
way, tensor frameworks degenerate to programming lan-
guages with a curiously cumbersome data model. This paper
argues that a more formal basis for tensors and their com-
putation brings important benefits. The proposed formalism
is based on 1) a strong type system for tensors with named
dimensions, 2) a common model of both dense and sparse
tensors, and 3) a small, closed set of tensor functions, provid-
ing a general mathematical language in which higher level
functions can be expressed.

These features work together to provide ease of use result-
ing from static type verification with meaningful dimension
names, improved interoperability resulting from defining
a closed set of just six foundational tensor functions, and
better support for performance optimizations resulting from
having just a small set of core functions needing low-level op-
timizations, and higher-level operations being able to work
on arbitrary chunks of these functions, as well as from bet-
ter mathematical properties from using named tensor di-
mensions without inherent order. The proposed model is
implemented as the model inference engine in the Vespa
big data serving engine, where it runs various models ex-
pressed in this language directly, as well as models expressed
in TensorFlow or Onnx formats.

Keywords Computer Science, Machine Learning, Inference

1 Introduction
Tensors - as used in computer science - generalizes scalars,
vectors, matrixes and higher-order data structures into a
single construct, such that they can be modeled and com-
puted over in a unified way. The adoption of tensors in com-
puter science over recent years in tools such as TensorFlow,
NumPy and PyTorch follows the rise of connectionist and
numerical approaches in machine learning. The promise of
tensors - a concept borrowed from mathematics - is that
computation will have a formal basis, enabling operability
and meta-computation such as optimization by supplying
well-defined semantics, and enabling practitioners to work
on a abstraction level than processing of numbers. Has the

adoption of tensors delivered on this promise? Arguably
not. Taking perhaps the most well-known tensor library,
TensorFlow as example, it defines thousands of functions
on tensors, many taking parameters specifying their exact
behavior, which can only be understood by reading their
documentation. It has a separate data model (consisting of
multiple dense tensors) for sparse tensors, with separate
copies of functions working on them. The lack of support for
string indexes has led to string tensor values, which defeats
some of the purpose of using a common representation as
scalar and string processing is incompatible. Providing full
interoperability between TensorFlow and other tools is no-
toriously hard as new functions and parameters keep being
added, and the only precise definition of each function is
often the source code.
This paper argues that a more formal basis for tensors

based on a strong type system, a common model for sparse
and dense tensors, and a small, closed set of universal tensor
functions can provide improved usability and interoperabil-
ity, and provide far better support for optimization.

2 Related work
The difficulty in defining complex computations over ten-
sors based on anonymous indexed tensor dimensions has
also been noted by others. Tensor Considered Harmful [1]
proposes amending tensors with named dimensions and pro-
viding alternatives of operations taking names instead of
indexes. Similarly, Tsalib [2] provides a library to add named
dimension annotations on top of existing unnamed tensors
in current tensor frameworks including Numpy, TensorFlow
and PyTorch. AxisArray [3] defines a multidimensional array
type used named dimensions for tensor computation in the
Julia programming language. These proposals share the idea
of using named dimensions to make tensor computations
easier to understand with this paper, but none take the op-
portunity arising from this for creating a small set of generic
operations and doing away with dimension ordering, nor do
they include support for sparse dimensions.

3 Scope of this paper
Apractically useful language of computation require a notion
of function definitions to provide a way to name and refer to
parametrized chunks of computation. A discussion of this
is orthogonal to tensors, provided that a pure mathematical
notion of computation is used, as here. Therefore, it is left
out of this paper.

Jon Bratseth, Håvard Pettersen, and Lester Solbakken

During learning it is typically necessary to make frequent
small adjustments to values in tensors. While this is readily
expressed as a join between the tensor under training and
an adjustment tensor in the language to be presented here, it
requires a notion of a mutable tensor to produce reasonable
performance when the trained tensor is large. Mutability is
a foreign concept to a mathematical formalism, and so not
treated further here, other than noting that mathematically
sound computation over a mutable tensor is achieved by
providing an immutable view during a computation.

4 Desired features of a tensor formalism
We propose the following desired features of a tensor for-
malism for computer science:

• A common representation of dense and sparse
tensors. Some machine learning methods use dense
dimensions while others use sparse dimensions with
an open set of potential points, most which are empty.
Furthermore, some combine both kind of dimensions
in a single tensor. A general tensor framework need
to support both kinds of dimensions, allow them to be
combined in a single tensor, and allow computation
freely across both kinds. Sparse tensors should sup-
port string label indexes to allow strings to be used in
models.

• A strong type system using named dimensions
and allowing static type inference of all compu-
tation. Named dimensions provide formal documen-
tation that can be semantically verified, making tensor
based models easier to work with for humans. In ad-
dition, named dimensions allow general computation
using a smaller set of core functions having superior
mathematical properties (see the next section).

• A small, closed set of foundational mathemati-
cal operations over tensors. With named tensors,
it is possible to define a small set of tensor functions
in terms of which all other computations can be ex-
pressed. This enables interoperability as implement-
ing this small set is all that is needed to realize com-
plete support for tensor computation. Furthermore,
it it makes optimization work more efficient as low
level optimizations are needed only on this set of func-
tions, while higher-level optimizations can work on
whichever chunks of these operations are beneficial,
independently of any chunking into higher-level func-
tions humans happen to find meaningful.

5 The tensor formalism
In this section we describe the proposed tensor formalism in
full detail, starting with tensors and tensor types, and ending
with the set of core tensor functions.

5.1 Tensor types
A tensor type consists of a set of dimensions and a value type.
The value type is one of the standard numerical types: float,
double, etc. The default value type is double.

Each dimension has a name, a type which is eithermapped
or indexed, and if indexed optionally a size, making it a bound
indexed dimension. The number of dimensions in a tensor
is called its order. Notice that the notion of a “dimensions”
here is separate from “dimensions” in a vector space (where
it denotes the length of a 1-dimensional tensor).
A point along a dimension is located by a string or non-

negative integer label. Indexed dimensions only use integer
labels and must supply values for all integers from 0 to 1 less
than the length of the dimension.

All values of a tensor must be located in all dimensions of
its type. Values at points which are not explicitly present in
a tensor have no default value; they do not exist.

A tensor type has a string representation defined by the
following (in modernized EBNF):

tensor-type = "tensor" ("<" value-type ">")?
"(" dimensions ")" ;

value-type = "byte" | "short" | "int" | "long" |
"half" | "float" | "double" ;

dimensions = | dimension , { "," dimension } ;
dimension = dimension-name ("{}" | "[" size? "]") ;
dimension-name = identifier ;
identifier = [a-zA-Z_][a-z-A-Z0-9]* ;
size = [1-9][0-9]* ;

Examples:
A double:
tensor()

An indexed, bound vector of 3 floats:
tensor<float>(x[3])

An indexed, bound matrix of unbound x size:
tensor(x[],y[3])

A (sparse) map of named integer values:
tensor<int>(name{})

A map of named vectors of floats:
tensor<int>(name{},x[2])

5.2 Tensors
A tensor consists of a tensor type and a set of values con-
forming to that type. Only tensors of the 0-order type can
have zero values. That tensor is identical to the NaN scalar
value.

A tensor has a string representation defined by the fol-
lowing (as a continuation of the EBNF above):

tensor = (tensor-type ":")?
"{" cells | dense-short-form "}" ;

cells = | cell , { "," cell } ;
cell = "{" address "}:" scalar ;

A tensor formalism for computer science

address = | element, { "," element } ;
element = dimension-name ":" label ;
label = integer | identifier ;
dense-short-form = "[" dense-subspace

("," dense-subspace)* "]" ;
dense-subspace = dense-short-form | scalar ;

Examples:

A double:
tensor():3.0

An indexed bound vector of 3 floats (dense form):
tensor<float>(x[3]):[0.5, 1, 1.5]

An indexed bound matrix of doubles (dense form):
tensor(x[2],y[3]):[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

A (sparse) map of named integer values:
tensor<int>(name{}):

{ {name:foo}:2, {name:bar}:5 }

A map of named vectors of floats:
tensor<int>(name{},x[2]):

{ {name:foo,x:0}:1,
{name:foo,x:1}:2,
{name:bar,x:0}:3,
{name:bar,x:1}:4 }

5.3 Tensor functions
The following nine functions define the language of compu-
tation over tensors:

5.3.1 Function: map
map(tensor1, f (x)(expression))

A tensorwith the lambda function defined by f (x)(expression)
applied to each cell value of tensor1, where expression is a
regular mathematical expression over scalars.

The type of this tensor is the same as tensor1.

5.3.2 Function: reduce
reduce(tensor1,aддreдator ,dim1,dim2, ...)

A tensor with the aggregator applied over all values of the
given dimensions to produce a single value for each point of
tensor1 in its remaining dimensions.

The type of this tensor is the set of dimensions in the type
of tensor1 which are not in the given list of dimensions. If no
dimensions are specified, this reduces over all dimensions,
producing a dimensionless tensor (a scalar).

Aggregators:

avg: arithmetic mean
count: number of elements
prod: product of all values
sum: sum of all values
max: maximum value
min: minimum value

5.3.3 Function: join
join(tensor1, tensor2, f (x,y)(expression))

A tensor constructed from the natural join between tensor1
and tensor2, with the resulting cells having the value defined
by f (x,y)(expression), where x is the cell value from tensor1
and y from tensor2.
The type of this tensor has the union of dimension of

tensor1 and tensor2, where the size of any bound dimension
present in both is the minimum of their sizes. The cells are
the set of all combinations of cells that have equal values on
their common dimensions.

Whenever the lambda of join has an infix operator form in
regular arithmetics, a valid short form is to denote the join
with that lamda by that operator, i.e join(a,b, f (x,y)(x ∗ y))
can be written as a ∗ b.

5.3.4 Function: merge
merдe(tensor1, tensor2, f (x,y)(expression))

A tensor consisting of all cells from both the arguments,
where the lambda function is used to produce a single value
in the cases where both arguments provide a value for a cell.
The arguments must have the same types.

5.3.5 Function: rename
rename(tensor1,dimensionsToRename,newNames)

Renames one or more dimensions in the tensor. The sec-
ond and third argument must have the same length and can
either be a single dimension name or a list of dimension
names enclosed in parenthesis. The type of the resulting
tensor is the same as that of tensor1, with the names of the
specified dimensions changed.

5.3.6 Function: concat
concat(tensor1, tensor2,dim)

Concatenates two tensors along the indexed dimension
dim, such that any values in tensor2 have indexes in that
dimension starting at the next index after the last value in
that dimension in tensor1. If the dimensiondim is not present
in an argument tensor, all its values are taken to lie at the
first index in that dimension.

The type of this tensor is the union of the types of tensor1
and tensor2, where the size of any bound dimension present
in both is the max of their sizes, and where the dimension
dim is added as a bound indexed dimension having the size
of the sum of this dimension in tensor1 and tensor2, and the
size is taken to be 1 if the dimension is missing.

This definition allows tensors of different sizes to be con-
catenated and when this occurs, missing values are padded
with zeros.

5.3.7 Function: tensor
tensorType(expression)

Jon Bratseth, Håvard Pettersen, and Lester Solbakken

Defines a new tensor according to type specification and
lamba expression body expression.

The type of this tensor is the bound indexed tensor given
by tensorType . expression will be evaluated for each cell
implied by the type. The arguments of the expression are the
names of the dimensions defined in the type spec (therefore,
the lambda heading is omitted).

5.3.8 Function: slice
(tensor1){partial − address}
Slices a tensor by returning a tensor containing all the

cells matching the partial address, with a type consisting of
the dimensions of the argument which are not specified in
the partial address. Address indexes may be supplied by a
lambda function.

5.3.9 Function: tensor-literal-form
tensor − type : tensor − cells

Creates a tensor from a type and cell values given literally.
Each cell value may be supplied by a lambda function.

6 Discussion
The tensor functions defined in the previous section pro-
vide a language which allows general computation to be
expressed over any combination of sparse (mapped) and
dense (indexed) tensor dimensions. Much of the expressible
power of the model is due to using lambdas, but in addi-
tion it is also due to the generality of join resulting from
the use of named dimensions: A join over tensors with the
same dimensions is mathematically the matrix Hadamard
product generalized to N dimensions, while a join over dis-
junct dimensions is the tensor product. A join over partially
overlapping dimensions produces results in-between these
extremes (of which matrix multiplication is a well-known
example). By combining join and rename any such semantics
can be achieved for any tensors.

A further consequence of using named dimensions is that
tensor computation becomes not only associative but also
commutative. In mathematics tensor operations are not nec-
essarily commutative since the semantics of operations are
defined by the implicit indexes of the dimensions, which are
order dependent. By using named dimension and defining
tensors and their types in terms of sets, which are inherently
unordered, commutativity is trivially achieved (the exception
is concat, which has an explicitly order-dependent defini-
tion). This makes it easier to work with tensors expressions
for humans but also opens up important opportunities for
optimization, as it is often beneficial to perform computa-
tion in an order chosen by the cardinality of the dimensions
instead of the given order.
By allowing string labels as indexes, we can represent

string based models without resorting to storing strings in

place of scalar values. In this way, the universality of func-
tions can be maintained also for models operating on string
data. Since the type produced by each function is clearly
defined, the type resulting from any computation is readily
computed statically by composition.

6.1 Higher-order functions
Table 1 (next page) lists a set of commonly used tensor func-
tions and their definition in terms of the language of func-
tions listed above.

6.2 Model examples
To give some flavor of how this language can be used in
practice, we show two examples.

First, a neural net with one hidden layer (expressed in the
composite functions listed in the table on the next page):

Tensors:
inputTensor: tensor(input[20])
hiddenLayerWeights: tensor(input[20],hidden[40])
hiddenLayerBias: tensor(hidden[40])
finalLayerWeights: tensor(hidden[40], final[1])
finalLayerBias: tensor(final[1])

Expression:
sigmoid(sum(relu(sum(inputTensor *

hiddenLayerWeights, input)
+ hiddenLayerBias)
* finalLayerWeights, hidden)

+ finalLayerBias)

Second, a regression model which supplies a weight for
each combination of three sparse feature vectors (using the
short form of join):
Tensors:

topics: tensor(topic{})
interests: tensor(interest{})
locations: tensor(location{})
learnedWeights: tensor(topic{},

interest{},
location{})

Expression:
sum(
topics * interests * locations // Combine features
* learnedWeights // Apply weights

)

7 Current applications
This formalism is adopted for scalable inference during query
evaluation in the Vespa.ai big data serving engine [4]. It is
used for two purposes: As a language for practitioners to
express their models, and as a common runtime inference
engine both for models expressed directly in this language
and models imported from TensorFlow [5] and Onnx [6]
representations. This is a good indication of the generality
of the formalism, and in practical terms means that Vespa
developers can focus their attention on optimizing a single

A tensor formalism for computer science

abs(t) map(t , f (x)(abs(x))) Absolute value of all elements.
acos(t) map(t , f (x)(acos(x))) Arc cosine of all elements.
t1 + t2 join(t1, t2, f (x , y)(x + y)) Join and sum tensors t1 and t2.
arдmax (t) join(t ,max (t), f (x , y)(i f (x == y, 1, 0))) A tensor with cell(s) of the highest value(s) in the tensor

set to 1.
arдmin(t) join(t ,min(t), f (x , y)(i f (x >= y, 0, 1))) A tensor with cell(s) of the lowest value(s) in the tensor set

to 1.
asin(t) map(t , f (x)(asin(x))) Arc sine of all elements.
atan(t) map(t , f (x)(atan(x))) Arc tangent of all elements.
atan2(t1, t2) join(t1, t2, f (x , y)(atan2(x , y))) Arctangent of t1 and t2.
avд(t , dim) r educe(t , avд, dim) Reduce the tensor with the average aggregator along di-

mension dim.
ceil (t) map(t , f (x)(ceil (x))) Ceiling of all elements.
count (t , dim) r educe(t , count , dim) Reduce the tensor with the count aggregator along dimen-

sion dim.
cos(t) map(t , f (x)(cos(x))) Cosine of all elements.
cosh(t) map(t , f (x)(cosh(x))) Hyperbolic cosine of all elements.
diaд(n1, n2) tensor (i[n1], j[n2])(i f (i == j , 1.0, 0.0))) A tensor with the diagonal set to 1.0.
t1/t2 join(t1, t2, f (x , y)(x/y)) Join and divide tensors t1 and t2.
elu(t) map(t , f (x)(i f (x < 0, exp(x) − 1, x))) Exponential linear unit.
t1 == t2 join(t1, t2, f (x , y)(x == y)) Join and determine if each element in t1 and t2 are equal.
exp(t) map(t , f (x)(exp(x))) Exponential function (ex) of each element.
f loor (t) map(t , f (x)(f loor (x))) Floor of each element.
t1 > t2 join(t1, t2, f (x , y)(x > y)) Join and determine if each element in t1 is greater than t2.
t1 >= t2 join(t1, t2, f (x , y)(x >= y)) Join and determine if each element in t1 is greater than or

equals t2.
t1 < t2 join(t1, t2, f (x , y)(x < y)) Join and determine if each element in t1 is less than t2.
t1 <= t2 join(t1, t2, f (x , y)(x <= y)) Join and determine if each element in t1 is less than or

equals t2.
l1_normalize(t , dim) join(t , r educe(t , sum, dim), f (x , y)(x/y)) L1 normalization: t/sum(t , dim).
l2_normalize(t , dim) join(t ,map(r educe(map(t , f (x)(x ∗ x)), sum, dim), f (x)(sqr t (x))), f (x , y)(x/y)) L2 normalization: t/sqr t (sum(t 2, dim).
loд(t) map(t , f (x)(loд(x))) Natural logarithm of each element.
loд10(t) map(t , f (x)(loд10(x))) Logarithm with base 10 of each element.
matmul (t1, t2, dim) r educe(join(t1, t2, f (x , y)(x ∗ y)), sum, dim) Matrix multiplication of two tensors. This is the product of

the two tensors summed along a shared dimension.
max (t , dim) r educe(t ,max , dim) Reduce the tensor with the max aggregator along dimen-

sion dim.
max (t1, t2) join(t1, t2, f (x , y)(max (x , y))) Join and return the max of t1 or t2. Arguments can be

scalars.
min(t , dim) r educe(t ,min, dim) Reduce the tensor with the min aggregator along dimen-

sion dim.
min(t1, t2) join(t1, t2, f (x , y)(min(x , y))) Join and return the minimum of t1 or t2. Arguments can be

scalars.
mod (t , constant) map(t , f (x)(mod (x , constant))) Modulus of constant with each element.
t1 ∗ t2 join(t1, t2, f (x , y)(x ∗ y)) Join and multiply tensors t1 and t2.
t1! = t2 join(t1, t2, f (x , y)(x ! = y)) Join and determine if each element in t1 and t2 are not

equal.
pow (t , constant) map(t , f (x)(pow (x , constant))) Raise each element to the power of constant.
prod (t , dim) r educe(t , prod , dim) Reduce the tensor with the product aggregator along di-

mension dim.
random(n1, n2, ...) tensor (i1[n1], i2[n2], ...)(random(1.0)) A tensor with random values between 0.0 and 1.0, uniform

distribution.
ranдe(n) tensor (i[n])(i) A tensor with increasing values.
r elu(t) map(t , f (x)(max (0, x))) Rectified linear unit.
round (t) map(t , f (x)(round (x))) Round each element.
siдmoid (t) map(t , f (x)(1.0/(1.0 + exp(0.0 − x)))) The sigmoid of each element.
sin(t) map(t , f (x)(sin(x))) Sinus of each element.
sinh(t) map(t , f (x)(sinh(x))) Hyperbolic sinus of each element.
siдn(t) map(t , f (x)(i f (x < 0, −1.0, 1.0))) The sign of each element.
sof tmax (t , dim) join(map(t , f (x)(exp(x))), r educe(map(t , f (x)(exp(x))), sum, dim), f (x , y)(x/y)) The softmax of the tensor, e.g. ex /sum(ex).
sqr t (t) map(t , f (x)(sqr t (x))) The square root of each element.
square(t) map(t , f (x)(square(x))) The square of each element.
t1 − t2 join(t1, t2, f (x , y)(x − y)) Join and subtract tensors t1 and t2.
sum(t , dim) r educe(t , sum, dim) Reduce the tensor with the summation aggregator along

dimension dim.
tan(t) map(t , f (x)(tan(x))) The tangent of each element.
tanh(t) map(t , f (x)(tanh(x))) The hyperbolic tangent of each element.
xw_plus_b(x ,w , b , dim) join(r educe(join(x ,w , f (x , y)(x ∗ y)), sum, dim), b , f (x , y)(x + y)) Matrix multiplication of x (usually a vector) and w

(weights), with b added (bias).

Table 1. Composite functions and their formal definition

runtime to improve performance on models written in all
these forms (as well as any combination such as writing an
expression combining multiple TensorFlow models).
Such models have been running for some time in pro-

duction to perform tensor based inferences at large scale in
various applications, such as neural nets for user comment
ranking [7], and various embedded vector similarity scoring
models.

A complete standalone implementation in Java of the ten-
sor formalism described here is also available in open source
on GitHub [8].

8 Conclusion
Basing numerical computation on tensors promises interop-
erability, ease of abstraction, and meta-reasoning over com-
putation. However, to deliver on this promise rather than

Jon Bratseth, Håvard Pettersen, and Lester Solbakken

becoming just an inconvenient data structure for communi-
cation between arbitrary pieces of code, a strong foundation
for tensors and their computation is needed.
This paper has presented a formalism which provides

generic computation over both dense and sparse tensors,
with with full static type inference, using just six founda-
tional tensor functions. Named dimensions are used to add
semantic information and achieve generality, and index la-
bels provide support for models working with strings. This
formalism is validated in a wide range of production use
cases by its adoption. By adopting this formalism, tensor
frameworks and tools can deliver on the promise of tensors
to make numerical computation easier to express, under-
stand, optimize and interchange.

References
[1] Tensors Considered Harmful, Harvard NLP blog post by Alexander Rush

http://nlp.seas.harvard.edu/NamedTensor
[2] Smarter Deep Learning with Tensor Shape Library : tsalib, Towards Data

Science blog post by Nishant Sinha https://towardsdatascience.com/i
ntroducing-tensor-shape-annotation-library-tsalib-963b5b13c35b

[3] AxsisArrays GitHub project home https://github.com/JuliaArrays/Axi
sArrays.jl

[4] Vespa.ai home page https://vespa.ai
[5] Ranking with TensorFlow Models, Vespa documentation https://docs.v

espa.ai/documentation/tensorflow.html
[6] Ranking with Onnx Models, Vespa documentation https://docs.vespa.a

i/documentation/onnx.html
[7] Serving article comments using reinforcement learning of a neural net,

Vespa blog post by Jon Bratseth https://medium.com/vespa/serving-a
rticle-comments-using-reinforcement-learning-of-az-neural-net-83
f7ded17e8f

[8] A standalone Java implementation on GitHub.com https://github.com
/vespa-engine/vespa/tree/master/vespajlib/src/main/java/com/yaho
o/tensor

http://nlp.seas.harvard.edu/NamedTensor
https://towardsdatascience.com/introducing-tensor-shape-annotation-library-tsalib-963b5b13c35b
https://towardsdatascience.com/introducing-tensor-shape-annotation-library-tsalib-963b5b13c35b
https://github.com/JuliaArrays/AxisArrays.jl
https://github.com/JuliaArrays/AxisArrays.jl
https://vespa.ai
https://docs.vespa.ai/documentation/tensorflow.html
https://docs.vespa.ai/documentation/tensorflow.html
https://docs.vespa.ai/documentation/onnx.html
https://docs.vespa.ai/documentation/onnx.html
https://medium.com/vespa/serving-article-comments-using-reinforcement-learning-of-az-neural-net-83f7ded17e8f
https://medium.com/vespa/serving-article-comments-using-reinforcement-learning-of-az-neural-net-83f7ded17e8f
https://medium.com/vespa/serving-article-comments-using-reinforcement-learning-of-az-neural-net-83f7ded17e8f
https://github.com/vespa-engine/vespa/tree/master/vespajlib/src/main/java/com/yahoo/tensor
https://github.com/vespa-engine/vespa/tree/master/vespajlib/src/main/java/com/yahoo/tensor
https://github.com/vespa-engine/vespa/tree/master/vespajlib/src/main/java/com/yahoo/tensor

	Abstract
	1 Introduction
	2 Related work
	3 Scope of this paper
	4 Desired features of a tensor formalism
	5 The tensor formalism
	5.1 Tensor types
	5.2 Tensors
	5.3 Tensor functions

	6 Discussion
	6.1 Higher-order functions
	6.2 Model examples

	7 Current applications
	8 Conclusion
	References

