
Analyzing your game performance using
Event Tracing for Windows

Event Tracing for Windows (ETW) is a kernel-level tracing mechanism that logs various system events to a log
file. This log can then be viewed to debug your application or determine where performance issues are
happening. These events are generated by system components called providers, which make it possible to
capture very fine, detailed pieces of data that can be used to analyze program performance characteristics.

Event Tracing for Windows is supported on all Windows-based platforms, and can be used to profile the Unity
Editor, Standalone players and Windows Store players running on all PCs and devices.

Profiling using Event Tracing for Windows is a two-step process:

1. Run an application and record the trace log (this is carried out on the target machine)
2. Analyze the trace log (this is carried out on the developer's machine)

Running Event Tracing for Windows on a PC allows both event log capture and analysis on the same machine.
The recorded event trace file can be recognized by the .etl file extension.

NOTE: It is important not to profile an application running in the Unity Editor unless it has been determined
that the problem is caused by doing so, as performance characteristics will be slightly different to the final built
game and may give inaccurate results.

Recording a trace on PC

The most straightforward way to capture traces on a PC is to use Windows Performance Recorder (wprui.exe).

Open Windows Performance Recorder and take a look at the list of available Event Provider profiles that you
can enable for the capture. You can also add custom profiles, which allow you to only enable capture for the
things you are interested in (see #Custom ETW Capture Profiles).

NOTE: Profiles are resource-intensive. It is important to minimize the number of enabled profiles where
possible, as this reduces the overhead for the capture, makes the captured trace log smaller, and reduces the
chance that events are dropped. If you have a lot of profiles enabled, you risk a massive capture trace log -
potentially several gigabytes per minute of capture.

Select what you want to profile and click the Start button to initiate the capture.

When the capture is finished, click the Save button and, if required, fill in the detailed description box that
appears. This box is optional; leave it blank if you don’t need to record a problem for future reference. Click
Save again to exit this window.

Windows Performance Recorder can take a while to save the trace log, especially if you’re running it for the first
time on the target machine. When the save is complete, you are asked whether you want to open it. Click
“Open in WPA” to analyze the trace log in Windows Performance Analyzer.

Recording a trace on a Windows phone
The most straightforward way to capture traces on a Windows phone is to use the (Field Medic)
[https :// www . microsoft . com / en - us / store / apps / field - medic /9 wzdncrfjb 82] app.

Install the app and launch it from the target device.

From the main menu, tap Advanced to select the ETW Event Providers to use for the capture.

https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82
https://www.microsoft.com/en-us/store/apps/field-medic/9wzdncrfjb82

NOTE: It is recommended that you only select one provider when using Field Medic to capture traces, as it
produces one .etl file per profile, rather than one per recording.

Once you have selected the Event Provider(s) to record, go back to the main menu and click Start Logging.
When it starts collecting data, perform the actions you want to record.

When you’ve finished recording, go back to the Field Medic app and click Stop Logging. Enter a name for the
captured trace and click Save to save the trace log to the device’s storage.

To retrieve the trace log from the device, connect the device to a PC, open its storage in Explorer and navigate
to the Documents\Field Medic\Reports directory.

Inside that folder, locate the .etl file.

Custom Event Provider profiles

To use custom profiles in Field Medic, copy the profile file to Documents/FieldMedic/CustomProfiles on the
target Windows mobile device.

For more information on custom Event Providers, see #Custom ETW Capture Profiles.

Custom ETW capture profiles

This page lists several available ETW capture profiles, which enable different Event Providers. These capture
profiles are included in the zip file along with this PDF.

• Unity+CPU+MF+DXGI.wprp - Enables CPU Usage providers (sampling and precise), DXGI providers and
several other MediaFoundation and Direct3D providers. Use this ETW capture profile to record CPU and
frame rate providers.

• Unity+CPU+MF+DotNet+DXGI.wprp - Same as Unity+CPU+MF+DXGI.wprp, except it also captures stack
traces for managed code when using .NET scripting backend.

• VirtualAlloc.wprp - Enables various memory usage providers, including VirtualAlloc Commit providers.
Use this to record memory usage.

Analysing the captured trace using
Windows Performance Analyzer

Windows Performance Analyzer is part of the Windows Performance toolkit, which can be installed with the
[Windows SDK](https :// dev . windows . com / en - us / downloads / windows -10- sdk). Open the captured trace (the
.etl file) with Windows Performance Analyzer.

Caption: Windows Performance Analyzer main window

https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
https://dev.windows.com/en-us/downloads/windows-10-sdk
http://docs.unity3d.com/uploads/Examples/VirtualAlloc.wprp
http://docs.unity3d.com/uploads/Examples/Unity+CPU+MF+DotNet+DXGI.wprp
http://docs.unity3d.com/uploads/Examples/Unity+CPU+MF+DXGI.wprp

The graphs on the left-hand side give you different performance metrics. The number of available graphs
depends on the number of recorded Event Providers. Double-click a graph for a more detailed view in the
Analysis tab. Open multiple graphs to display corresponding information across the same time range:

Using the timeline

Select a time range on one graph to select it on all graphs. This also highlights the events in the selected part of
the timeline:

To filter the events to the selected time range, right-click on the time range and choose Zoom:

Using the Analysis tab

The Analysis tab contains event data from specific Event Providers. For each graph, the Analysis tab shows
different data. Each row represents an event or an event group, while each column represents event data fields.
The columns are divided into two groups:

• The columns to the left of the yellow line represent expandable event groups, grouped by column name
in left-to-right priority.

• The columns to the right of the yellow line represent aggregated event data in the expandable event
groups.

Caption: Analysis tab view of a CPU Usage (Sampled) graph

In this example screenshot, the event groups are first grouped by the Process column, then by Stack. On the
right side of the yellow line is the aggregated sample count for each process, followed by the aggregated
sample count for each stack frame group. For example, in the screenshot above, the spaces on the timeline
highlighted in blue represent samples with a ntdll.dll function on top of their stack trace being taken from the
Nightmares.exe process.

Add additional columns by right-clicking on the header row and selecting the desired column:

Dragged to the desired position as needed by left-clicking and holding as you move the column:

The Analyze tab can be filtered on a very detailed basis. Select the rows you want to filter, right-click on them,
and select the desired filtering option:

Loading symbols

To inspect the captured stack traces, you need to load the executable symbol files (with the extension .pdb) into
Windows Performance Analyzer. To do this, you first need to set the correct symbol paths. Open the Trace menu
and click on Configure Symbol Paths:

The first path in the list points to the Microsoft Symbol Servers. Windows Performance Analyzer knows how to
download symbol files for OS DLLs from it. In this example, the symbol server path is
SRV*D:\Symbols*http :// msdl . microsoft . com / download / symbols.

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

Note: The first part of the server path, SRV, indicates that the path points to a symbol server. The second part of
the path, D:\Symbols, indicates which directory the symbols are downloaded to from the server. The third part
of the path, http :// msdl . microsoft . com / download / symbols, is the URL to the Microsoft Symbol Servers.

The symbol server path can also be set automatically by setting a _NT_SYMBOL_PATH environment variable to
the path string. This means that Windows Performance Analyzer (and many other tools) can use this without
you needing to manually configure it.

When you profile your game, you also need to add paths to Unity symbols and any plugins you might use. Unity
symbols are automatically installed with Unity. You can find them next to the executables:

• Windows Editor: <UnityInstallDir>\Editor
• Windows Standalone Player:

<UnityInstallDir>\Editor\Data\PlaybackEngines\windowsstandalonesupport\Variations\<PlayerType>
• Windows Store Player with .NET scripting backend:

• <UnityInstallDir>\Editor\Data\PlaybackEngines\metrosupport\Players\<SDK>\<CPU
Architecture>\<Configuration>\

• <GeneratedVSSolutionDir>\<ProjectName>\bin\<CPU Architecture>\<Configuration>
• Windows Store Player with IL2CPP scripting backend: <GeneratedVSSolutionDir>\build\<CPU

Architecture>\<Configuration>\

After adding all desired symbol paths, go to Trace > Load symbols:

Loading symbols for the first time can take a while, especially if you’re on a slow internet connection.
Subsequent loads will be faster, as the symbols are cached on your machine.

Frame rate provider

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

Every time DirectX presents a frame to the screen, it logs an ETW event named IDXGISwapChain_Present. It
outputs two such events per frame: one when the presentation starts, and one when it finishes. The time

between finish events indicates how long each frame is.

To see this event in Windows Performance Analyzer, you need to capture your trace with the DXGI Event
Provider enabled. To view the data, expand the System Activity graph in the Graph Explorer and then double-
click on the Generic Events graph:

To see the frame rate for your process only, drag the Process column to the left so that it becomes the most
significant grouping column. This groups all the events by process:

Right-click on the process you want to see and click Filter To Selection so that only the selected process is
visible:

In the Provider Name column, open Microsoft-Windows-DXGI, then locate the row that contains win.Stop in
the Opcode Name column. Click this row to filter to the events traced at the end of each
IDXGISwapChain_Present presentation.

This filter allows you to see all the distinct frames that happened during the capture:

An easy way to see frame rate spikes is to copy and paste these frame times into a spreadsheet program and
convert them into a line graph:

You can also inspect individual frames by zooming into the timeline. Usually when investigating low
performance, the problem is either constant low frame rate or frame rate spikes. A zoomed-in view helps you
find time periods to focus the analysis on when focusing on the whole trace is impractical:

CPU Usage (Sampled) provider

The CPU Usage (Sampled) profiler logs what every CPU core is doing every millisecond - that’s 1000 samples per
second per CPU core. The accuracy of this provider is not 100%; it doesn’t know how long each particular
function has taken, just that it was executing when the program was sampled.

The provider is useful for investigating a program’s CPU usage over the length of a capture. Statistically, the
more samples it takes, the more accurate it becomes, so it’s recommended to use this provider when the
profiling time is at least 100 ms. Using it to analyze shorter periods of time can be inaccurate.

To bring the CPU Usage (Sampled) event provider into the Analysis tab, double-click on it in the Graph Explorer:

Example walkthrough

In this example, we have a game that has lower performance than we’d like.

Caption: Example game screenshot

The first step was to take a look at the frame rate, which in this instance seemed to be pretty stable. I picked a
particular time period, between the 6th and 7th second of the capture. In this particular second, it had just over
27 frames. This is a very good case for using a CPU usage (Sampled) provider to investigate, as we have enough
data points for it to be useful:

Generally when investigating performance issues in Unity games, you only need to focus on a subset of Thread
IDs, as most threads do not impact frame rate at all (for example, audio threads and COM message loops). Drag
the Thread ID column to the left-hand side, to group samples by the thread they were taken from:

In this example, the three bottom threads aren’t relevant to the frame rate problem. Thread 19340 is an
internal AMD graphics driver thread (we can determine this by googling the name of the DLL if it isn’t already
known and can’t be worked out from the name).

It might have been a candidate, being graphics-related, but since it took up so little time we can remove it from
our list of suspects.

Threads 24192 and 24164 are Enlighten global illumination worker threads (our example game doesn’t use
global illumination, so these are mostly idle):

The following 7 threads (9520, 11924, 15708, 10608, 25684, 17856 and 3856) are Unity JobQueue threads.
They all share similar stacktraces, all starting with “JobQueue::WorkLoop”:

The number of JobQueue threads depends on the machine that the game is running on. This trace was
captured on an i7 machine with 4 physical cores and hyperthreading (8 logical cores in total), so Unity decided
to make 7 such threads. These worker threads do multithreaded work that can be moved from the main thread
safely, such as culling, preparing to render into shadow maps, sorting objects for rendering, and physics
calculations. In our case these threads have a relatively small sample count, so they’re not affecting the frame
rate.

You can hide irrelevant threads by selecting them, right-clicking on them and pressing “filter out selection”:

We are left with only two threads. Let’s take a look at the bottom one:

This is Unity’s rendering thread. You can recognize it because it starts with the “GfxDeviceWorker::Run”

function. In this example it looks like it spends most of its time doing dynamic batching (transforming vertices of
each object so that objects can be drawn together with fewer draw calls). This can be expensive in cases where
there are many tiny dynamic objects that don’t get statically batched.

Let’s look at the last remaining thread. This is Unity’s main thread:

It seems that most of work here is divided between “PostLateUpdate_FinishFrameRendering” and
“PlayerLoop”. Let’s take a look at the former one first.

Over a third of the whole rendering time in our game is spent rendering shadow maps - but if you look at the
screenshot of the game, you can see that the shadows aren’t even visible. What a waste! Disabling shadows in
this case helps performance a lot, with no visual degradation whatsoever.

The rest of the time during rendering is spent running the forward render loop, building render queues, and
preparing to render. The only way to reduce this cost is to reduce the number of meshes in the scene.

Now let’s look at the “PlayerLoop” part of the main thread.

The first items to address here are the mysterious “?!?” stack frames. These frames are Mono JIT-ed code,
which Windows Performance Analyzer cannot decode. Therefore, managed stack frames cannot be shown
when using Mono scripting backend. With .NET scripting backend, they can be decoded as long as the trace was
recorded with .NET ETW provider enabled, while with IL2CPP scripting backend they can be decoded as long as
there is a matching PDB file.

It looks like most of the “PlayerLoop” time is taken by a MonoBehaviour update. It calls the
“Object.FindObjectsOfType()” function multiple times, which is very resource-intensive as evident in the
sample count attributed to it. There’s also some managed code taking a little time, and finally some physics
calculations. The main course of action in this case is to eliminate these “FindObjectsOfType()” calls every
frame, and perhaps cache the results in the “Start()” function.

CPU Usage (Precise) provider

The CPU Usage (Precise) provider shows the precise CPU usage of all threads running in the system, by logging
every single context switch that the operating system executes. A context switch is the switching execution on

the CPU from one thread to another.

Unlike the CPU Usage (Sampled) provider, CPU Usage (Precise) only indicates which threads are executing at a
particular point in time, not what those threads are doing. The only stack trace it gives is the stack trace from
where the thread was when it started its execution during the context switch. This provider is usually used for
wait analysis, to investigate why a thread isn’t running.

The CPU Usage (Precise) provider shows very different data compared to the CPU Usage (Sampled) provider.
The CPU Usage (Precise) provider only logs OS context switches, so these events make up the rows of the
Analysis tab for this provider.

To bring the CPU Usage (Sampled) event provider into the Analysis tab, double-click on it in the Graph Explorer:

These are the most significant columns in the Analysis tab:

12.New Process: The process that owns the new thread.
13.New Thread ID: The thread to which the context was switched.
14.New Thread Stack: The stack trace of the new thread when it was switched in (note: this matches the

stack for when it was last switched out).
15.Readying Process: The process that owns the readying thread.
16.Readying Thread ID: The thread that caused the new thread to wake up. This is equal to -1 in cases

where the new thread wasn’t waiting for anything, and was swapped out because its quantum had run
out.

17.Count: Total context switch count for that row.
18.Ready: The moment in time when the new thread became ready to be switched in.

19.Waits: The amount of time the new thread waited before it became ready to be switched in.
20.Switch-In Time: The moment in time when the new thread was switched in.

CPU Usage (Precise) provider: Example walkthrough

We have a game that runs nicely most of the time, but sometimes a frame rate spike occurs:

Upon zooming into the selected region, we can see that the CPU Usage (Sampled) provider had no data of
what was happening during the spike (only 11 samples were captured), even though the spike took a massive
942.766 ms:

This usually indicates that the game was not actually executing. Let’s look at the CPU Usage (Precise) provider
data to confirm our theory:

CPU Usage (Precise) provider shows what we already knew: the CPU was not used a lot by our process during
that spike. However, it still detected that our process used the CPU for brief moments of time - it had its thread
switched in a total of 745 times. Even though there are so many active threads, most of them will not be very
relevant to our investigation: there will be Unity’s JobQueue threads, Enlighten global illumination threads, OS

thread pool threads, and others that we can’t affect. We’re really only interested in figuring out why Unity’s
main thread wasn’t doing anything: after all, that’s what affects our framerate.

Our main thread in this case is thread 23436, which has a total of 25 context switch-ins recorded between the
two frames. If we filter to only this thread, we can see that it was doing nothing (or waiting for something)
almost the whole time:

To understand what the thread was doing, we need to take a look at its stack during the first switch-in after the
spike. To do this, sort the context switches by the Switch-In Time (s) column, so we can see which context
switch was the first one after the spike:

We can clearly see which context switch happened just after the spike, and after filtering our view to it, we can
see where our thread was switched in:

So, it seems that the culprit is a script named “SaveGamePeriodically”. It seems to be doing something
expensive in its Update() function (note: we cannot see “Update()” function in the callstack because the JIT
most likely inlined it, but we can tell the script name from its invoker method “SaveGamePeriodically.
$Invoke6”, and we can tell that it is an update method because higher in the call stack we can see the Unity’s
function “CallUpdateMethod”).

We identified where the time is spent waiting, but we still don’t know what it is waiting for. To do that, we can
check the “Readying Process” and “Readying Thread Id” columns, which tell us which thread was responsible
for bring our thread out of the wait:

Our thread was waiting for thread 16568. But what was thread 16568 doing?

It turns out that thread 16568 was waiting for yet another thread for over 927 ms, and that other thread is
from another process! Let’s look at the CPU usage of thread 24416:

Apparently, thread 24416 was waiting for 927 ms for thread 24452! Let’s keep following the chain:

This thread has actually been waiting twice: for thread 9264 for 56 ms, and for thread 2896 for 857 ms. Let’s
ignore the shorter wait and focus on the longer one. So, what was thread 2896 doing?

Thread 2896 has been busy during the whole frame rate spike. This is the final thread in the chain that our
Update() function was waiting for. Let’s find out what it was actually doing this whole time, using the CPU
Usage (Sampled) provider:

At first sight, thread 2896 looks like it’s creating some kind of shell storage item array, and is querying its various
properties. Unfortunately, we cannot really find out why it’s taking so long - the whole code in the stacktrace is
part of Windows OS, and is not available publicly.

The only actionable thing to do here is to not do the call that causes the spike. Apparently, our Update()
function was trying to enumerate AppData directory when it wanted to save the game - a process that can be
very resource-intensive. It would be wise to do this enumeration at times when the delay caused by doing so
would not impact the user (e.g. between screens, or when loading a scene), or find some other less resource-
intensive way of getting the data we need to save the game.

VirtualAlloc Commit provider

Unity’s own built-in memory usage profiler can show you why the engine is using a certain amount of memory.
However, the real memory usage is usually higher than the Unity memory profiler might suggest. The difference
usually comes from the fact that Unity only knows how much it has itself allocated, and estimates the memory
usage outside of its control (such as loaded executable images, graphics drivers, and plug-ins).

The VirtualAlloc Commit provider shows the allocated memory detected by the operating system. It is different
to Unity’s built-in memory usage profiler, as it counts every single low-level instance of operating system virtual
memory allocation, and allows you to investigate what led to the allocation.

To bring the VirtualAlloc Commit provider into the Analysis tab, expand the memory graph in the Graph
Explorer and double-click the VirtualAlloc Commit LifeTimes graph:

Each row in the VirtualAlloc Commit provider’s Analysis tab represents a virtual memory allocation. These are
the most important columns of this provider:

21.Process: The process allocating the memory.
22.Committing Thread Id: The ID number of the thread that is allocating the memory.
23.Commit Stack: The stack trace at the time of memory allocation.
24.Decommit Stack: The stack trace at the time of freeing the allocated memory.
25.Commit Time: The point in time that the memory was allocated.
26.Decommit Time: The point in time that the memory was freed.
27.Address: The start address of the allocated memory region.
28.Count: The total allocation count in the row.
29.Impacting Size: The size of the allocated memory region, if the memory was not freed before the end

of the zoomed region. If the memory was freed in the same region, the impact size is given as 0.
When investigating high memory usage, you'll mainly be focusing on allocated memory that was not freed. The
Impacting Size column is the main focus point.

After capturing a trace, open the VirtualAlloc Commit provider Details view and filter the view to your own
process to see something like this:

As you can see, the Impacting Size is reported to be 0MB on every single thread. This is due to the fact that the
process both starts and exits while the stack is being recorded.

VirtualAlloc Commit provider: Example Walkthrough

Let’s say we’re interested in looking at memory usage at its peak. To do so, we need to select a time range
which starts before the process was started, and ends at its memory usage peak:

After zooming into the selected region on the graph, we can now see the Impacting Size (MB) column telling us
how much memory was used at the end of the selection:

Let’s investigate the memory investigations of each thread, starting with the ones that allocated at least a
megabyte. Anything less than that is probably insignificant.

Straight away, we can identify that threads 17236, 21396 and 25484 allocate memory for the graphics driver:

You can’t really influence what the driver does, and since we don’t have symbols for the driver either, we can’t
tell why it’s allocating the memory. Let’s move on.

Thread 18728 is Unity’s AsyncReadManager thread:

AsyncReadManager is a dedicated thread for reading files from disk. You may have noticed two peculiarities
with this stack trace:

• It allocated an incredibly round number of bytes during one of its allocations: 1.004 MB.
• That allocation comprises the majority of the total memory used by the thread, and was allocated by

the “File::Open” function.
It would seem unlikely that opening a single file would cost so much memory, and for this to be the reason for
the majority of thread memory usage. However, this isn’t a coincidence - it’s a consequence of how Unity
allocates memory internally.

Unlike many applications, Unity doesn’t request memory from the OS and then return it once it’s no longer
needed. Instead, it requests memory in chunks of 1 MB, and reuses these chunks without giving them back to
the OS. You can see the difference between Unity actually using the memory versus requesting it from the OS
by looking at the used and reserved memory in Unity’s internal memory profiler.

Depending on the target platform, Unity either keeps separate memory reservations per thread (on
desktops/consoles), or has a shared pool for all the worker threads (on mobile devices). On Windows, shared
pool is used only on ARM devices.

Due to the way Unity manages its memory, the VirtualAlloc Commit provider can’t really show what Unity is
doing with it - if you want to investigate that, you’ll have to use Unity’s internal memory profiler. You can
recognize Unity-managed allocation by looking at the callstack and seeing whether
“MemoryManager::Allocate” is part of it. You will almost never want to look at these allocations with Windows
Performance Analysis.

The next thread in the list is thread 27244:

This is Unity’s loading thread. It can be recognized by the fact that it starts with the “PreloadManager::Run”

function. Most of the allocations in this thread go through Unity’s MemoryManager, so we will not look at that.
However, there are also other allocations coming from code JIT-ing:

The more scripting code you have, the more memory will be allocated by Mono and .NET JITs at runtime. Note
that there’s no JIT when using IL2CPP scripting backend or .NET scripting backend with .NET Native enabled.

Let’s continue our investigation. The next 7 threads are Unity’s JobQueue threads:

As seen from the screenshot, almost all memory allocated for these threads is coming from
“profiler_begin_frame_separate_thread”, which allocates 12MB on each thread. Unity pre-allocates 12 MB per
JobQueue thread for the profiler events in development builds.

The only other allocation by these threads comes from “UI::SortForBatchingJob”:

However, since this is allocated through MemoryManager, we cannot be sure whether that is what is using the
memory.

We have two threads to go:

The bottom thread, 18584, is Unity’s rendering thread:

We can see that Unity allocates the same 12MB for the profiler in this thread. It also allocates 4MB through the
MemoryManager - but only a small portion of this goes to the profiler.

The rest of the allocations on this thread are far more interesting. For example, graphics drivers/Direct3D 11
runtime allocate a total of 3.3 MB for shaders:

We can also see the memory used by vertex and index buffers:

Uploading textures generally doesn’t allocate much memory if the device has dedicated VRAM. At 80
allocations for a total of 3.5 MB, graphics drivers/Direct3D 11 allocated an average of 45 KB per texture:

Finally, 8MB is allocated for dynamic vertex buffers:

Those were all of the outstanding allocations that the rendering thread did in our game.

Now let’s move to Unity’s main thread:

Most of the allocations made on Unity’s main thread will go through the MemoryManager. We don’t need to
pay attention to these, as we can see all of their details in Unity’s internal memory profiler. Let’s filter these
allocations out:

1.3MB of memory is allocated by creating a Direct3D 11 device; 300 KB of memory is allocated by creating a
Direct3D 11 query; 200KB of memory is allocated because Unity asked DXGIFactory whether it supports
stereoscopic rendering; 3.5 MB of memory is allocated by Enlighten global illumination initialization; 4MB is
allocated by loading Mono.

Let’s look at the rest:

Almost 500KB is allocated by scripting code; 3MB goes to Unity’s main thread stack allocator (Unity uses it for
various temporary data storage); almost 500KB is used by audio initialization, and the rest (around 3.7 MB) is
used by MonoManager::AwakeFromLoad.

Let’s take a look inside MonoManager::AwakeFromLoad and see what it does:

Those 3.7MB consist of 1.6 MB for code JIT-ing and 2.1MB for managed assembly loading.

The more you know about your application’s memory allocation, the easier it will be to solve any related
problems that are occurring. An application that is unexpectedly using very large amounts of memory can be
analysed in this way to narrow down where the problem might be occurring.

