7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159 | def run_ray_tune(
model,
space: dict = None,
grace_period: int = 10,
gpu_per_trial: int = None,
max_samples: int = 10,
**train_args,
):
"""
Run hyperparameter tuning using Ray Tune.
Args:
model (YOLO): Model to run the tuner on.
space (dict, optional): The hyperparameter search space. If not provided, uses default space.
grace_period (int, optional): The grace period in epochs of the ASHA scheduler.
gpu_per_trial (int, optional): The number of GPUs to allocate per trial.
max_samples (int, optional): The maximum number of trials to run.
**train_args (Any): Additional arguments to pass to the `train()` method.
Returns:
(ray.tune.ResultGrid): A ResultGrid containing the results of the hyperparameter search.
Examples:
>>> from ultralytics import YOLO
>>> model = YOLO("yolo11n.pt") # Load a YOLO11n model
Start tuning hyperparameters for YOLO11n training on the COCO8 dataset
>>> result_grid = model.tune(data="coco8.yaml", use_ray=True)
"""
LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
if train_args is None:
train_args = {}
try:
checks.check_requirements("ray[tune]")
import ray
from ray import tune
from ray.air import RunConfig
from ray.air.integrations.wandb import WandbLoggerCallback
from ray.tune.schedulers import ASHAScheduler
except ImportError:
raise ModuleNotFoundError('Ray Tune required but not found. To install run: pip install "ray[tune]"')
try:
import wandb
assert hasattr(wandb, "__version__")
except (ImportError, AssertionError):
wandb = False
checks.check_version(ray.__version__, ">=2.0.0", "ray")
default_space = {
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
"lr0": tune.uniform(1e-5, 1e-1),
"lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
"weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay
"warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum
"box": tune.uniform(0.02, 0.2), # box loss gain
"cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
"hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
"hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg)
"translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction)
"scale": tune.uniform(0.0, 0.9), # image scale (+/- gain)
"shear": tune.uniform(0.0, 10.0), # image shear (+/- deg)
"perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
"flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability)
"fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability)
"bgr": tune.uniform(0.0, 1.0), # image channel BGR (probability)
"mosaic": tune.uniform(0.0, 1.0), # image mosaic (probability)
"mixup": tune.uniform(0.0, 1.0), # image mixup (probability)
"cutmix": tune.uniform(0.0, 1.0), # image cutmix (probability)
"copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability)
}
# Put the model in ray store
task = model.task
model_in_store = ray.put(model)
def _tune(config):
"""Train the YOLO model with the specified hyperparameters and return results."""
model_to_train = ray.get(model_in_store) # get the model from ray store for tuning
model_to_train.reset_callbacks()
config.update(train_args)
results = model_to_train.train(**config)
return results.results_dict
# Get search space
if not space and not train_args.get("resume"):
space = default_space
LOGGER.warning("Search space not provided, using default search space.")
# Get dataset
data = train_args.get("data", TASK2DATA[task])
space["data"] = data
if "data" not in train_args:
LOGGER.warning(f'Data not provided, using default "data={data}".')
# Define the trainable function with allocated resources
trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
# Define the ASHA scheduler for hyperparameter search
asha_scheduler = ASHAScheduler(
time_attr="epoch",
metric=TASK2METRIC[task],
mode="max",
max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100,
grace_period=grace_period,
reduction_factor=3,
)
# Define the callbacks for the hyperparameter search
tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else []
# Create the Ray Tune hyperparameter search tuner
tune_dir = get_save_dir(
get_cfg(
DEFAULT_CFG,
{**train_args, **{"exist_ok": train_args.pop("resume", False)}}, # resume w/ same tune_dir
),
name=train_args.pop("name", "tune"), # runs/{task}/{tune_dir}
).resolve() # must be absolute dir
tune_dir.mkdir(parents=True, exist_ok=True)
if tune.Tuner.can_restore(tune_dir):
LOGGER.info(f"{colorstr('Tuner: ')} Resuming tuning run {tune_dir}...")
tuner = tune.Tuner.restore(str(tune_dir), trainable=trainable_with_resources, resume_errored=True)
else:
tuner = tune.Tuner(
trainable_with_resources,
param_space=space,
tune_config=tune.TuneConfig(
scheduler=asha_scheduler,
num_samples=max_samples,
trial_name_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
trial_dirname_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
),
run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir.parent, name=tune_dir.name),
)
# Run the hyperparameter search
tuner.fit()
# Get the results of the hyperparameter search
results = tuner.get_results()
# Shut down Ray to clean up workers
ray.shutdown()
return results
|