Reference for ultralytics/data/augment.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/augment.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.data.augment.BaseTransform
BaseTransform()
Base class for image transformations in the Ultralytics library.
This class serves as a foundation for implementing various image processing operations, designed to be compatible with both classification and semantic segmentation tasks.
Methods:
Name | Description |
---|---|
apply_image |
Apply image transformations to labels. |
apply_instances |
Apply transformations to object instances in labels. |
apply_semantic |
Apply semantic segmentation to an image. |
__call__ |
Apply all label transformations to an image, instances, and semantic masks. |
Examples:
>>> transform = BaseTransform()
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}
>>> transformed_labels = transform(labels)
This constructor sets up the base transformation object, which can be extended for specific image processing tasks. It is designed to be compatible with both classification and semantic segmentation.
Examples:
>>> transform = BaseTransform()
Source code in ultralytics/data/augment.py
45 46 47 48 49 50 51 52 53 54 55 |
|
__call__
__call__(labels)
Apply all label transformations to an image, instances, and semantic masks.
This method orchestrates the application of various transformations defined in the BaseTransform class to the input labels. It sequentially calls the apply_image and apply_instances methods to process the image and object instances, respectively.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image data and annotations. Expected keys include 'img' for the image data, and 'instances' for object instances. |
required |
Returns:
Type | Description |
---|---|
dict
|
The input labels dictionary with transformed image and instances. |
Examples:
>>> transform = BaseTransform()
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
>>> transformed_labels = transform(labels)
Source code in ultralytics/data/augment.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
apply_image
apply_image(labels)
Apply image transformations to labels.
This method is intended to be overridden by subclasses to implement specific image transformation logic. In its base form, it returns the input labels unchanged.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Any
|
The input labels to be transformed. The exact type and structure of labels may vary depending on the specific implementation. |
required |
Returns:
Type | Description |
---|---|
Any
|
The transformed labels. In the base implementation, this is identical to the input. |
Examples:
>>> transform = BaseTransform()
>>> original_labels = [1, 2, 3]
>>> transformed_labels = transform.apply_image(original_labels)
>>> print(transformed_labels)
[1, 2, 3]
Source code in ultralytics/data/augment.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
apply_instances
apply_instances(labels)
Apply transformations to object instances in labels.
This method is responsible for applying various transformations to object instances within the given labels. It is designed to be overridden by subclasses to implement specific instance transformation logic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing label information, including object instances. |
required |
Returns:
Type | Description |
---|---|
dict
|
The modified labels dictionary with transformed object instances. |
Examples:
>>> transform = BaseTransform()
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
>>> transformed_labels = transform.apply_instances(labels)
Source code in ultralytics/data/augment.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
apply_semantic
apply_semantic(labels)
Apply semantic segmentation transformations to an image.
This method is intended to be overridden by subclasses to implement specific semantic segmentation transformations. In its base form, it does not perform any operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Any
|
The input labels or semantic segmentation mask to be transformed. |
required |
Returns:
Type | Description |
---|---|
Any
|
The transformed semantic segmentation mask or labels. |
Examples:
>>> transform = BaseTransform()
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
>>> transformed_mask = transform.apply_semantic(semantic_mask)
Source code in ultralytics/data/augment.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
ultralytics.data.augment.Compose
Compose(transforms)
A class for composing multiple image transformations.
Attributes:
Name | Type | Description |
---|---|---|
transforms |
List[Callable]
|
A list of transformation functions to be applied sequentially. |
Methods:
Name | Description |
---|---|
__call__ |
Apply a series of transformations to input data. |
append |
Append a new transform to the existing list of transforms. |
insert |
Insert a new transform at a specified index in the list of transforms. |
__getitem__ |
Retrieve a specific transform or a set of transforms using indexing. |
__setitem__ |
Set a specific transform or a set of transforms using indexing. |
tolist |
Convert the list of transforms to a standard Python list. |
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(30)]
>>> compose = Compose(transforms)
>>> transformed_data = compose(data)
>>> compose.append(CenterCrop((224, 224)))
>>> compose.insert(0, RandomFlip())
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transforms
|
List[Callable]
|
A list of callable transform objects to be applied sequentially. |
required |
Examples:
>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
>>> transforms = [RandomHSV(), RandomFlip()]
>>> compose = Compose(transforms)
Source code in ultralytics/data/augment.py
169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
__call__
__call__(data)
Apply a series of transformations to input data.
This method sequentially applies each transformation in the Compose object's transforms to the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
The input data to be transformed. This can be of any type, depending on the transformations in the list. |
required |
Returns:
Type | Description |
---|---|
Any
|
The transformed data after applying all transformations in sequence. |
Examples:
>>> transforms = [Transform1(), Transform2(), Transform3()]
>>> compose = Compose(transforms)
>>> transformed_data = compose(input_data)
Source code in ultralytics/data/augment.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
__getitem__
__getitem__(index: Union[list, int]) -> Compose
Retrieve a specific transform or a set of transforms using indexing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int | List[int]
|
Index or list of indices of the transforms to retrieve. |
required |
Returns:
Type | Description |
---|---|
Compose
|
A new Compose object containing the selected transform(s). |
Raises:
Type | Description |
---|---|
AssertionError
|
If the index is not of type int or list. |
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
>>> compose = Compose(transforms)
>>> single_transform = compose[1] # Returns a Compose object with only RandomPerspective
>>> multiple_transforms = compose[0:2] # Returns a Compose object with RandomFlip and RandomPerspective
Source code in ultralytics/data/augment.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
__repr__
__repr__()
Return a string representation of the Compose object.
Returns:
Type | Description |
---|---|
str
|
A string representation of the Compose object, including the list of transforms. |
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
>>> compose = Compose(transforms)
>>> print(compose)
Compose([
RandomFlip(),
RandomPerspective(degrees=10, translate=0.1, scale=0.1)
])
Source code in ultralytics/data/augment.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
__setitem__
__setitem__(index: Union[list, int], value: Union[list, int]) -> None
Set one or more transforms in the composition using indexing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int | List[int]
|
Index or list of indices to set transforms at. |
required |
value
|
Any | List[Any]
|
Transform or list of transforms to set at the specified index(es). |
required |
Raises:
Type | Description |
---|---|
AssertionError
|
If index type is invalid, value type doesn't match index type, or index is out of range. |
Examples:
>>> compose = Compose([Transform1(), Transform2(), Transform3()])
>>> compose[1] = NewTransform() # Replace second transform
>>> compose[0:2] = [NewTransform1(), NewTransform2()] # Replace first two transforms
Source code in ultralytics/data/augment.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
append
append(transform)
Append a new transform to the existing list of transforms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transform
|
BaseTransform
|
The transformation to be added to the composition. |
required |
Examples:
>>> compose = Compose([RandomFlip(), RandomPerspective()])
>>> compose.append(RandomHSV())
Source code in ultralytics/data/augment.py
205 206 207 208 209 210 211 212 213 214 215 216 |
|
insert
insert(index, transform)
Insert a new transform at a specified index in the existing list of transforms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
The index at which to insert the new transform. |
required |
transform
|
BaseTransform
|
The transform object to be inserted. |
required |
Examples:
>>> compose = Compose([Transform1(), Transform2()])
>>> compose.insert(1, Transform3())
>>> len(compose.transforms)
3
Source code in ultralytics/data/augment.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
tolist
tolist()
Convert the list of transforms to a standard Python list.
Returns:
Type | Description |
---|---|
list
|
A list containing all the transform objects in the Compose instance. |
Examples:
>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
>>> compose = Compose(transforms)
>>> transform_list = compose.tolist()
>>> print(len(transform_list))
3
Source code in ultralytics/data/augment.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
ultralytics.data.augment.BaseMixTransform
BaseMixTransform(dataset, pre_transform=None, p=0.0)
Base class for mix transformations like Cutmix, MixUp and Mosaic.
This class provides a foundation for implementing mix transformations on datasets. It handles the probability-based application of transforms and manages the mixing of multiple images and labels.
Attributes:
Name | Type | Description |
---|---|---|
dataset |
Any
|
The dataset object containing images and labels. |
pre_transform |
Callable | None
|
Optional transform to apply before mixing. |
p |
float
|
Probability of applying the mix transformation. |
Methods:
Name | Description |
---|---|
__call__ |
Apply the mix transformation to the input labels. |
_mix_transform |
Abstract method to be implemented by subclasses for specific mix operations. |
get_indexes |
Abstract method to get indexes of images to be mixed. |
_update_label_text |
Update label text for mixed images. |
Examples:
>>> class CustomMixTransform(BaseMixTransform):
... def _mix_transform(self, labels):
... # Implement custom mix logic here
... return labels
...
... def get_indexes(self):
... return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
>>> dataset = YourDataset()
>>> transform = CustomMixTransform(dataset, p=0.5)
>>> mixed_labels = transform(original_labels)
This class serves as a base for implementing mix transformations in image processing pipelines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Any
|
The dataset object containing images and labels for mixing. |
required |
pre_transform
|
Callable | None
|
Optional transform to apply before mixing. |
None
|
p
|
float
|
Probability of applying the mix transformation. Should be in the range [0.0, 1.0]. |
0.0
|
Examples:
>>> dataset = YOLODataset("path/to/data")
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
Source code in ultralytics/data/augment.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
__call__
__call__(labels)
Apply pre-processing transforms and cutmix/mixup/mosaic transforms to labels data.
This method determines whether to apply the mix transform based on a probability factor. If applied, it selects additional images, applies pre-transforms if specified, and then performs the mix transform.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing label data for an image. |
required |
Returns:
Type | Description |
---|---|
dict
|
The transformed labels dictionary, which may include mixed data from other images. |
Examples:
>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
Source code in ultralytics/data/augment.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
get_indexes
get_indexes()
Get a list of shuffled indexes for mosaic augmentation.
Returns:
Type | Description |
---|---|
List[int]
|
A list of shuffled indexes from the dataset. |
Examples:
>>> transform = BaseMixTransform(dataset)
>>> indexes = transform.get_indexes()
>>> print(indexes) # [3, 18, 7, 2]
Source code in ultralytics/data/augment.py
431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
ultralytics.data.augment.Mosaic
Mosaic(dataset, imgsz=640, p=1.0, n=4)
Bases: BaseMixTransform
Mosaic augmentation for image datasets.
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.
Attributes:
Name | Type | Description |
---|---|---|
dataset |
The dataset on which the mosaic augmentation is applied. |
|
imgsz |
int
|
Image size (height and width) after mosaic pipeline of a single image. |
p |
float
|
Probability of applying the mosaic augmentation. Must be in the range 0-1. |
n |
int
|
The grid size, either 4 (for 2x2) or 9 (for 3x3). |
border |
Tuple[int, int]
|
Border size for width and height. |
Methods:
Name | Description |
---|---|
get_indexes |
Return a list of random indexes from the dataset. |
_mix_transform |
Apply mixup transformation to the input image and labels. |
_mosaic3 |
Create a 1x3 image mosaic. |
_mosaic4 |
Create a 2x2 image mosaic. |
_mosaic9 |
Create a 3x3 image mosaic. |
_update_labels |
Update labels with padding. |
_cat_labels |
Concatenate labels and clips mosaic border instances. |
Examples:
>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...) # Your image dataset
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
>>> augmented_labels = mosaic_aug(original_labels)
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Any
|
The dataset on which the mosaic augmentation is applied. |
required |
imgsz
|
int
|
Image size (height and width) after mosaic pipeline of a single image. |
640
|
p
|
float
|
Probability of applying the mosaic augmentation. Must be in the range 0-1. |
1.0
|
n
|
int
|
The grid size, either 4 (for 2x2) or 9 (for 3x3). |
4
|
Examples:
>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
Source code in ultralytics/data/augment.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
|
get_indexes
get_indexes()
Return a list of random indexes from the dataset for mosaic augmentation.
This method selects random image indexes either from a buffer or from the entire dataset, depending on the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.
Returns:
Type | Description |
---|---|
List[int]
|
A list of random image indexes. The length of the list is n-1, where n is the number of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9). |
Examples:
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> indexes = mosaic.get_indexes()
>>> print(len(indexes)) # Output: 3
Source code in ultralytics/data/augment.py
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|
ultralytics.data.augment.MixUp
MixUp(dataset, pre_transform=None, p=0.0)
Bases: BaseMixTransform
Apply MixUp augmentation to image datasets.
This class implements the MixUp augmentation technique as described in the paper mixup: Beyond Empirical Risk Minimization. MixUp combines two images and their labels using a random weight.
Attributes:
Name | Type | Description |
---|---|---|
dataset |
Any
|
The dataset to which MixUp augmentation will be applied. |
pre_transform |
Callable | None
|
Optional transform to apply before MixUp. |
p |
float
|
Probability of applying MixUp augmentation. |
Methods:
Name | Description |
---|---|
_mix_transform |
Apply MixUp augmentation to the input labels. |
Examples:
>>> from ultralytics.data.augment import MixUp
>>> dataset = YourDataset(...) # Your image dataset
>>> mixup = MixUp(dataset, p=0.5)
>>> augmented_labels = mixup(original_labels)
MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel values and labels. This implementation is designed for use with the Ultralytics YOLO framework.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Any
|
The dataset to which MixUp augmentation will be applied. |
required |
pre_transform
|
Callable | None
|
Optional transform to apply to images before MixUp. |
None
|
p
|
float
|
Probability of applying MixUp augmentation to an image. Must be in the range [0, 1]. |
0.0
|
Examples:
>>> from ultralytics.data.dataset import YOLODataset
>>> dataset = YOLODataset("path/to/data.yaml")
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
Source code in ultralytics/data/augment.py
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
|
ultralytics.data.augment.CutMix
CutMix(dataset, pre_transform=None, p=0.0, beta=1.0, num_areas=3)
Bases: BaseMixTransform
Apply CutMix augmentation to image datasets as described in the paper https://arxiv.org/abs/1905.04899.
CutMix combines two images by replacing a random rectangular region of one image with the corresponding region from another image, and adjusts the labels proportionally to the area of the mixed region.
Attributes:
Name | Type | Description |
---|---|---|
dataset |
Any
|
The dataset to which CutMix augmentation will be applied. |
pre_transform |
Callable | None
|
Optional transform to apply before CutMix. |
p |
float
|
Probability of applying CutMix augmentation. |
beta |
float
|
Beta distribution parameter for sampling the mixing ratio. |
num_areas |
int
|
Number of areas to try to cut and mix. |
Methods:
Name | Description |
---|---|
_mix_transform |
Apply CutMix augmentation to the input labels. |
_rand_bbox |
Generate random bounding box coordinates for the cut region. |
Examples:
>>> from ultralytics.data.augment import CutMix
>>> dataset = YourDataset(...) # Your image dataset
>>> cutmix = CutMix(dataset, p=0.5)
>>> augmented_labels = cutmix(original_labels)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Any
|
The dataset to which CutMix augmentation will be applied. |
required |
pre_transform
|
Callable | None
|
Optional transform to apply before CutMix. |
None
|
p
|
float
|
Probability of applying CutMix augmentation. |
0.0
|
beta
|
float
|
Beta distribution parameter for sampling the mixing ratio. |
1.0
|
num_areas
|
int
|
Number of areas to try to cut and mix. |
3
|
Source code in ultralytics/data/augment.py
956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
|
ultralytics.data.augment.RandomPerspective
RandomPerspective(
degrees=0.0,
translate=0.1,
scale=0.5,
shear=0.0,
perspective=0.0,
border=(0, 0),
pre_transform=None,
)
Implement random perspective and affine transformations on images and corresponding annotations.
This class applies random rotations, translations, scaling, shearing, and perspective transformations to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an augmentation pipeline for object detection and instance segmentation tasks.
Attributes:
Name | Type | Description |
---|---|---|
degrees |
float
|
Maximum absolute degree range for random rotations. |
translate |
float
|
Maximum translation as a fraction of the image size. |
scale |
float
|
Scaling factor range, e.g., scale=0.1 means 0.9-1.1. |
shear |
float
|
Maximum shear angle in degrees. |
perspective |
float
|
Perspective distortion factor. |
border |
Tuple[int, int]
|
Mosaic border size as (x, y). |
pre_transform |
Callable | None
|
Optional transform to apply before the random perspective. |
Methods:
Name | Description |
---|---|
affine_transform |
Apply affine transformations to the input image. |
apply_bboxes |
Transform bounding boxes using the affine matrix. |
apply_segments |
Transform segments and generate new bounding boxes. |
apply_keypoints |
Transform keypoints using the affine matrix. |
__call__ |
Apply the random perspective transformation to images and annotations. |
box_candidates |
Filter transformed bounding boxes based on size and aspect ratio. |
Examples:
>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}
>>> result = transform(labels)
>>> transformed_image = result["img"]
>>> transformed_instances = result["instances"]
This class implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
degrees
|
float
|
Degree range for random rotations. |
0.0
|
translate
|
float
|
Fraction of total width and height for random translation. |
0.1
|
scale
|
float
|
Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%. |
0.5
|
shear
|
float
|
Shear intensity (angle in degrees). |
0.0
|
perspective
|
float
|
Perspective distortion factor. |
0.0
|
border
|
Tuple[int, int]
|
Tuple specifying mosaic border (top/bottom, left/right). |
(0, 0)
|
pre_transform
|
Callable | None
|
Function/transform to apply to the image before starting the random transformation. |
None
|
Examples:
>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
>>> result = transform(labels) # Apply random perspective to labels
Source code in ultralytics/data/augment.py
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 |
|
__call__
__call__(labels)
Apply random perspective and affine transformations to an image and its associated labels.
This method performs a series of transformations including rotation, translation, scaling, shearing, and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments, and keypoints accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image data and annotations. Must include: 'img' (np.ndarray): The input image. 'cls' (np.ndarray): Class labels. 'instances' (Instances): Object instances with bounding boxes, segments, and keypoints. May include: 'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation. |
required |
Returns:
Type | Description |
---|---|
dict
|
Transformed labels dictionary containing: - 'img' (np.ndarray): The transformed image. - 'cls' (np.ndarray): Updated class labels. - 'instances' (Instances): Updated object instances. - 'resized_shape' (Tuple[int, int]): New image shape after transformation. |
Examples:
>>> transform = RandomPerspective()
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {
... "img": image,
... "cls": np.array([0, 1, 2]),
... "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
... }
>>> result = transform(labels)
>>> assert result["img"].shape[:2] == result["resized_shape"]
Source code in ultralytics/data/augment.py
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 |
|
affine_transform
affine_transform(img, border)
Apply a sequence of affine transformations centered around the image center.
This function performs a series of geometric transformations on the input image, including translation, perspective change, rotation, scaling, and shearing. The transformations are applied in a specific order to maintain consistency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
ndarray
|
Input image to be transformed. |
required |
border
|
Tuple[int, int]
|
Border dimensions for the transformed image. |
required |
Returns:
Name | Type | Description |
---|---|---|
img |
ndarray
|
Transformed image. |
M |
ndarray
|
3x3 transformation matrix. |
s |
float
|
Scale factor applied during the transformation. |
Examples:
>>> import numpy as np
>>> img = np.random.rand(100, 100, 3)
>>> border = (10, 10)
>>> transformed_img, matrix, scale = affine_transform(img, border)
Source code in ultralytics/data/augment.py
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
|
apply_bboxes
apply_bboxes(bboxes, M)
Apply affine transformation to bounding boxes.
This function applies an affine transformation to a set of bounding boxes using the provided transformation matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bboxes
|
Tensor
|
Bounding boxes in xyxy format with shape (N, 4), where N is the number of bounding boxes. |
required |
M
|
Tensor
|
Affine transformation matrix with shape (3, 3). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Transformed bounding boxes in xyxy format with shape (N, 4). |
Examples:
>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
>>> M = torch.eye(3)
>>> transformed_bboxes = apply_bboxes(bboxes, M)
Source code in ultralytics/data/augment.py
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 |
|
apply_keypoints
apply_keypoints(keypoints, M)
Apply affine transformation to keypoints.
This method transforms the input keypoints using the provided affine transformation matrix. It handles perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image boundaries after transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keypoints
|
ndarray
|
Array of keypoints with shape (N, 17, 3), where N is the number of instances, 17 is the number of keypoints per instance, and 3 represents (x, y, visibility). |
required |
M
|
ndarray
|
3x3 affine transformation matrix. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Transformed keypoints array with the same shape as input (N, 17, 3). |
Examples:
>>> random_perspective = RandomPerspective()
>>> keypoints = np.random.rand(5, 17, 3) # 5 instances, 17 keypoints each
>>> M = np.eye(3) # Identity transformation
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
Source code in ultralytics/data/augment.py
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 |
|
apply_segments
apply_segments(segments, M)
Apply affine transformations to segments and generate new bounding boxes.
This function applies affine transformations to input segments and generates new bounding boxes based on the transformed segments. It clips the transformed segments to fit within the new bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segments
|
ndarray
|
Input segments with shape (N, M, 2), where N is the number of segments and M is the number of points in each segment. |
required |
M
|
ndarray
|
Affine transformation matrix with shape (3, 3). |
required |
Returns:
Name | Type | Description |
---|---|---|
bboxes |
ndarray
|
New bounding boxes with shape (N, 4) in xyxy format. |
segments |
ndarray
|
Transformed and clipped segments with shape (N, M, 2). |
Examples:
>>> segments = np.random.rand(10, 500, 2) # 10 segments with 500 points each
>>> M = np.eye(3) # Identity transformation matrix
>>> new_bboxes, new_segments = apply_segments(segments, M)
Source code in ultralytics/data/augment.py
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 |
|
box_candidates
staticmethod
box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16)
Compute candidate boxes for further processing based on size and aspect ratio criteria.
This method compares boxes before and after augmentation to determine if they meet specified thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have been overly distorted or reduced by the augmentation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box1
|
ndarray
|
Original boxes before augmentation, shape (4, N) where n is the number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates. |
required |
box2
|
ndarray
|
Augmented boxes after transformation, shape (4, N). Format is [x1, y1, x2, y2] in absolute coordinates. |
required |
wh_thr
|
float
|
Width and height threshold in pixels. Boxes smaller than this in either dimension are rejected. |
2
|
ar_thr
|
float
|
Aspect ratio threshold. Boxes with an aspect ratio greater than this value are rejected. |
100
|
area_thr
|
float
|
Area ratio threshold. Boxes with an area ratio (new/old) less than this value are rejected. |
0.1
|
eps
|
float
|
Small epsilon value to prevent division by zero. |
1e-16
|
Returns:
Type | Description |
---|---|
ndarray
|
Boolean array of shape (n) indicating which boxes are candidates. True values correspond to boxes that meet all criteria. |
Examples:
>>> random_perspective = RandomPerspective()
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
>>> candidates = random_perspective.box_candidates(box1, box2)
>>> print(candidates)
[True True]
Source code in ultralytics/data/augment.py
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 |
|
ultralytics.data.augment.RandomHSV
RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
Randomly adjust the Hue, Saturation, and Value (HSV) channels of an image.
This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.
Attributes:
Name | Type | Description |
---|---|---|
hgain |
float
|
Maximum variation for hue. Range is typically [0, 1]. |
sgain |
float
|
Maximum variation for saturation. Range is typically [0, 1]. |
vgain |
float
|
Maximum variation for value. Range is typically [0, 1]. |
Methods:
Name | Description |
---|---|
__call__ |
Apply random HSV augmentation to an image. |
Examples:
>>> import numpy as np
>>> from ultralytics.data.augment import RandomHSV
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> labels = {"img": image}
>>> augmenter(labels)
>>> augmented_image = augmented_labels["img"]
This class applies random adjustments to the HSV channels of an image within specified limits.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hgain
|
float
|
Maximum variation for hue. Should be in the range [0, 1]. |
0.5
|
sgain
|
float
|
Maximum variation for saturation. Should be in the range [0, 1]. |
0.5
|
vgain
|
float
|
Maximum variation for value. Should be in the range [0, 1]. |
0.5
|
Examples:
>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> hsv_aug(image)
Source code in ultralytics/data/augment.py
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 |
|
__call__
__call__(labels)
Apply random HSV augmentation to an image within predefined limits.
This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels. The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image data and metadata. Must include an 'img' key with the image as a numpy array. |
required |
Returns:
Type | Description |
---|---|
None
|
The function modifies the input 'labels' dictionary in-place, updating the 'img' key with the HSV-augmented image. |
Examples:
>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
>>> hsv_augmenter(labels)
>>> augmented_img = labels["img"]
Source code in ultralytics/data/augment.py
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 |
|
ultralytics.data.augment.RandomFlip
RandomFlip(p=0.5, direction='horizontal', flip_idx=None)
Apply a random horizontal or vertical flip to an image with a given probability.
This class performs random image flipping and updates corresponding instance annotations such as bounding boxes and keypoints.
Attributes:
Name | Type | Description |
---|---|---|
p |
float
|
Probability of applying the flip. Must be between 0 and 1. |
direction |
str
|
Direction of flip, either 'horizontal' or 'vertical'. |
flip_idx |
array - like
|
Index mapping for flipping keypoints, if applicable. |
Methods:
Name | Description |
---|---|
__call__ |
Apply the random flip transformation to an image and its annotations. |
Examples:
>>> transform = RandomFlip(p=0.5, direction="horizontal")
>>> result = transform({"img": image, "instances": instances})
>>> flipped_image = result["img"]
>>> flipped_instances = result["instances"]
This class applies a random horizontal or vertical flip to an image with a given probability. It also updates any instances (bounding boxes, keypoints, etc.) accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p
|
float
|
The probability of applying the flip. Must be between 0 and 1. |
0.5
|
direction
|
str
|
The direction to apply the flip. Must be 'horizontal' or 'vertical'. |
'horizontal'
|
flip_idx
|
List[int] | None
|
Index mapping for flipping keypoints, if any. |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1. |
Examples:
>>> flip = RandomFlip(p=0.5, direction="horizontal")
>>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
Source code in ultralytics/data/augment.py
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
|
__call__
__call__(labels)
Apply random flip to an image and update any instances like bounding boxes or keypoints accordingly.
This method randomly flips the input image either horizontally or vertically based on the initialized probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to match the flipped image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing the following keys: 'img' (numpy.ndarray): The image to be flipped. 'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and optionally keypoints. |
required |
Returns:
Type | Description |
---|---|
dict
|
The same dictionary with the flipped image and updated instances: 'img' (numpy.ndarray): The flipped image. 'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image. |
Examples:
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
>>> random_flip = RandomFlip(p=0.5, direction="horizontal")
>>> flipped_labels = random_flip(labels)
Source code in ultralytics/data/augment.py
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 |
|
ultralytics.data.augment.LetterBox
LetterBox(
new_shape=(640, 640),
auto=False,
scale_fill=False,
scaleup=True,
center=True,
stride=32,
)
Resize image and padding for detection, instance segmentation, pose.
This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates corresponding labels and bounding boxes.
Attributes:
Name | Type | Description |
---|---|---|
new_shape |
tuple
|
Target shape (height, width) for resizing. |
auto |
bool
|
Whether to use minimum rectangle. |
scale_fill |
bool
|
Whether to stretch the image to new_shape. |
scaleup |
bool
|
Whether to allow scaling up. If False, only scale down. |
stride |
int
|
Stride for rounding padding. |
center |
bool
|
Whether to center the image or align to top-left. |
Methods:
Name | Description |
---|---|
__call__ |
Resize and pad image, update labels and bounding boxes. |
Examples:
>>> transform = LetterBox(new_shape=(640, 640))
>>> result = transform(labels)
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_shape
|
Tuple[int, int]
|
Target size (height, width) for the resized image. |
(640, 640)
|
auto
|
bool
|
If True, use minimum rectangle to resize. If False, use new_shape directly. |
False
|
scale_fill
|
bool
|
If True, stretch the image to new_shape without padding. |
False
|
scaleup
|
bool
|
If True, allow scaling up. If False, only scale down. |
True
|
center
|
bool
|
If True, center the placed image. If False, place image in top-left corner. |
True
|
stride
|
int
|
Stride of the model (e.g., 32 for YOLOv5). |
32
|
Attributes:
Name | Type | Description |
---|---|---|
new_shape |
Tuple[int, int]
|
Target size for the resized image. |
auto |
bool
|
Flag for using minimum rectangle resizing. |
scale_fill |
bool
|
Flag for stretching image without padding. |
scaleup |
bool
|
Flag for allowing upscaling. |
stride |
int
|
Stride value for ensuring image size is divisible by stride. |
Examples:
>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, stride=32)
>>> resized_img = letterbox(original_img)
Source code in ultralytics/data/augment.py
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 |
|
__call__
__call__(labels=None, image=None)
Resize and pad an image for object detection, instance segmentation, or pose estimation tasks.
This method applies letterboxing to the input image, which involves resizing the image while maintaining its aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Dict | None
|
A dictionary containing image data and associated labels, or empty dict if None. |
None
|
image
|
ndarray | None
|
The input image as a numpy array. If None, the image is taken from 'labels'. |
None
|
Returns:
Type | Description |
---|---|
Dict | Tuple
|
If 'labels' is provided, returns an updated dictionary with the resized and padded image, updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized and padded image, and a tuple of (ratio, (left_pad, top_pad)). |
Examples:
>>> letterbox = LetterBox(new_shape=(640, 640))
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
Source code in ultralytics/data/augment.py
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
|
ultralytics.data.augment.CopyPaste
CopyPaste(dataset=None, pre_transform=None, p=0.5, mode='flip')
Bases: BaseMixTransform
CopyPaste class for applying Copy-Paste augmentation to image datasets.
This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from different images to create new training samples.
Attributes:
Name | Type | Description |
---|---|---|
dataset |
Any
|
The dataset to which Copy-Paste augmentation will be applied. |
pre_transform |
Callable | None
|
Optional transform to apply before Copy-Paste. |
p |
float
|
Probability of applying Copy-Paste augmentation. |
Methods:
Name | Description |
---|---|
_mix_transform |
Apply Copy-Paste augmentation to the input labels. |
__call__ |
Apply the Copy-Paste transformation to images and annotations. |
Examples:
>>> from ultralytics.data.augment import CopyPaste
>>> dataset = YourDataset(...) # Your image dataset
>>> copypaste = CopyPaste(dataset, p=0.5)
>>> augmented_labels = copypaste(original_labels)
Source code in ultralytics/data/augment.py
1767 1768 1769 1770 1771 |
|
__call__
__call__(labels)
Apply Copy-Paste augmentation to an image and its labels.
Source code in ultralytics/data/augment.py
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 |
|
ultralytics.data.augment.Albumentations
Albumentations(p=1.0)
Albumentations transformations for image augmentation.
This class applies various image transformations using the Albumentations library. It includes operations such as Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes in brightness and contrast, RandomGamma, and image quality reduction through compression.
Attributes:
Name | Type | Description |
---|---|---|
p |
float
|
Probability of applying the transformations. |
transform |
Compose
|
Composed Albumentations transforms. |
contains_spatial |
bool
|
Indicates if the transforms include spatial operations. |
Methods:
Name | Description |
---|---|
__call__ |
Apply the Albumentations transformations to the input labels. |
Examples:
>>> transform = Albumentations(p=0.5)
>>> augmented_labels = transform(labels)
Notes
- The Albumentations package must be installed to use this class.
- If the package is not installed or an error occurs during initialization, the transform will be set to None.
- Spatial transforms are handled differently and require special processing for bounding boxes.
This class applies various image augmentations using the Albumentations library, including Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and contrast, RandomGamma, and image quality reduction through compression.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p
|
float
|
Probability of applying the augmentations. Must be between 0 and 1. |
1.0
|
Attributes:
Name | Type | Description |
---|---|---|
p |
float
|
Probability of applying the augmentations. |
transform |
Compose
|
Composed Albumentations transforms. |
contains_spatial |
bool
|
Indicates if the transforms include spatial transformations. |
Raises:
Type | Description |
---|---|
ImportError
|
If the Albumentations package is not installed. |
Exception
|
For any other errors during initialization. |
Examples:
>>> transform = Albumentations(p=0.5)
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
>>> augmented_image = augmented["image"]
>>> augmented_bboxes = augmented["bboxes"]
Notes
- Requires Albumentations version 1.0.3 or higher.
- Spatial transforms are handled differently to ensure bbox compatibility.
- Some transforms are applied with very low probability (0.01) by default.
Source code in ultralytics/data/augment.py
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 |
|
__call__
__call__(labels)
Apply Albumentations transformations to input labels.
This method applies a series of image augmentations using the Albumentations library. It can perform both spatial and non-spatial transformations on the input image and its corresponding labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image data and annotations. Expected keys are: - 'img': numpy.ndarray representing the image - 'cls': numpy.ndarray of class labels - 'instances': object containing bounding boxes and other instance information |
required |
Returns:
Type | Description |
---|---|
dict
|
The input dictionary with augmented image and updated annotations. |
Examples:
>>> transform = Albumentations(p=0.5)
>>> labels = {
... "img": np.random.rand(640, 640, 3),
... "cls": np.array([0, 1]),
... "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
... }
>>> augmented = transform(labels)
>>> assert augmented["img"].shape == (640, 640, 3)
Notes
- The method applies transformations with probability self.p.
- Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
- Requires the Albumentations library to be installed.
Source code in ultralytics/data/augment.py
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 |
|
ultralytics.data.augment.Format
Format(
bbox_format="xywh",
normalize=True,
return_mask=False,
return_keypoint=False,
return_obb=False,
mask_ratio=4,
mask_overlap=True,
batch_idx=True,
bgr=0.0,
)
A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.
This class standardizes image and instance annotations to be used by the collate_fn
in PyTorch DataLoader.
Attributes:
Name | Type | Description |
---|---|---|
bbox_format |
str
|
Format for bounding boxes. Options are 'xywh' or 'xyxy'. |
normalize |
bool
|
Whether to normalize bounding boxes. |
return_mask |
bool
|
Whether to return instance masks for segmentation. |
return_keypoint |
bool
|
Whether to return keypoints for pose estimation. |
return_obb |
bool
|
Whether to return oriented bounding boxes. |
mask_ratio |
int
|
Downsample ratio for masks. |
mask_overlap |
bool
|
Whether to overlap masks. |
batch_idx |
bool
|
Whether to keep batch indexes. |
bgr |
float
|
The probability to return BGR images. |
Methods:
Name | Description |
---|---|
__call__ |
Format labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints. |
_format_img |
Convert image from Numpy array to PyTorch tensor. |
_format_segments |
Convert polygon points to bitmap masks. |
Examples:
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> formatted_labels = formatter(labels)
>>> img = formatted_labels["img"]
>>> bboxes = formatted_labels["bboxes"]
>>> masks = formatted_labels["masks"]
This class standardizes image and instance annotations for object detection, instance segmentation, and pose
estimation tasks, preparing them for use in PyTorch DataLoader's collate_fn
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bbox_format
|
str
|
Format for bounding boxes. Options are 'xywh', 'xyxy', etc. |
'xywh'
|
normalize
|
bool
|
Whether to normalize bounding boxes to [0,1]. |
True
|
return_mask
|
bool
|
If True, returns instance masks for segmentation tasks. |
False
|
return_keypoint
|
bool
|
If True, returns keypoints for pose estimation tasks. |
False
|
return_obb
|
bool
|
If True, returns oriented bounding boxes. |
False
|
mask_ratio
|
int
|
Downsample ratio for masks. |
4
|
mask_overlap
|
bool
|
If True, allows mask overlap. |
True
|
batch_idx
|
bool
|
If True, keeps batch indexes. |
True
|
bgr
|
float
|
Probability of returning BGR images instead of RGB. |
0.0
|
Attributes:
Name | Type | Description |
---|---|---|
bbox_format |
str
|
Format for bounding boxes. |
normalize |
bool
|
Whether bounding boxes are normalized. |
return_mask |
bool
|
Whether to return instance masks. |
return_keypoint |
bool
|
Whether to return keypoints. |
return_obb |
bool
|
Whether to return oriented bounding boxes. |
mask_ratio |
int
|
Downsample ratio for masks. |
mask_overlap |
bool
|
Whether masks can overlap. |
batch_idx |
bool
|
Whether to keep batch indexes. |
bgr |
float
|
The probability to return BGR images. |
Examples:
>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
>>> print(format.bbox_format)
xyxy
Source code in ultralytics/data/augment.py
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 |
|
__call__
__call__(labels)
Format image annotations for object detection, instance segmentation, and pose estimation tasks.
This method standardizes the image and instance annotations to be used by the collate_fn
in PyTorch
DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
applying normalization if required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image and annotation data with the following keys: - 'img': The input image as a numpy array. - 'cls': Class labels for instances. - 'instances': An Instances object containing bounding boxes, segments, and keypoints. |
required |
Returns:
Type | Description |
---|---|
dict
|
A dictionary with formatted data, including: - 'img': Formatted image tensor. - 'cls': Class label's tensor. - 'bboxes': Bounding boxes tensor in the specified format. - 'masks': Instance masks tensor (if return_mask is True). - 'keypoints': Keypoints tensor (if return_keypoint is True). - 'batch_idx': Batch index tensor (if batch_idx is True). |
Examples:
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
>>> formatted_labels = formatter(labels)
>>> print(formatted_labels.keys())
Source code in ultralytics/data/augment.py
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 |
|
ultralytics.data.augment.LoadVisualPrompt
LoadVisualPrompt(scale_factor=1 / 8)
Create visual prompts from bounding boxes or masks for model input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scale_factor
|
float
|
Factor to scale the input image dimensions. |
1 / 8
|
Source code in ultralytics/data/augment.py
2256 2257 2258 2259 2260 2261 2262 2263 |
|
__call__
__call__(labels)
Process labels to create visual prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
Dictionary containing image data and annotations. |
required |
Returns:
Type | Description |
---|---|
dict
|
Updated labels with visual prompts added. |
Source code in ultralytics/data/augment.py
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 |
|
get_visuals
get_visuals(category, shape, bboxes=None, masks=None)
Generate visual masks based on bounding boxes or masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
category
|
int | ndarray | Tensor
|
The category labels for the objects. |
required |
shape
|
tuple
|
The shape of the image (height, width). |
required |
bboxes
|
ndarray | Tensor
|
Bounding boxes for the objects, xyxy format. |
None
|
masks
|
ndarray | Tensor
|
Masks for the objects. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor containing the visual masks for each category. |
Raises:
Type | Description |
---|---|
ValueError
|
If neither bboxes nor masks are provided. |
Source code in ultralytics/data/augment.py
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 |
|
make_mask
make_mask(boxes, h, w)
Create binary masks from bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
boxes
|
Tensor
|
Bounding boxes in xyxy format, shape: (N, 4). |
required |
h
|
int
|
Height of the mask. |
required |
w
|
int
|
Width of the mask. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Binary masks with shape (N, h, w). |
Source code in ultralytics/data/augment.py
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 |
|
ultralytics.data.augment.RandomLoadText
RandomLoadText(
prompt_format: str = "{}",
neg_samples: Tuple[int, int] = (80, 80),
max_samples: int = 80,
padding: bool = False,
padding_value: List[str] = [""],
)
Randomly sample positive and negative texts and update class indices accordingly.
This class is responsible for sampling texts from a given set of class texts, including both positive (present in the image) and negative (not present in the image) samples. It updates the class indices to reflect the sampled texts and can optionally pad the text list to a fixed length.
Attributes:
Name | Type | Description |
---|---|---|
prompt_format |
str
|
Format string for text prompts. |
neg_samples |
Tuple[int, int]
|
Range for randomly sampling negative texts. |
max_samples |
int
|
Maximum number of different text samples in one image. |
padding |
bool
|
Whether to pad texts to max_samples. |
padding_value |
str
|
The text used for padding when padding is True. |
Methods:
Name | Description |
---|---|
__call__ |
Process the input labels and return updated classes and texts. |
Examples:
>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
>>> updated_labels = loader(labels)
>>> print(updated_labels["texts"])
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']
This class is designed to randomly sample positive texts and negative texts, and update the class indices accordingly to the number of samples. It can be used for text-based object detection tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_format
|
str
|
Format string for the prompt. The format string should contain a single pair of curly braces {} where the text will be inserted. |
'{}'
|
neg_samples
|
Tuple[int, int]
|
A range to randomly sample negative texts. The first integer specifies the minimum number of negative samples, and the second integer specifies the maximum. |
(80, 80)
|
max_samples
|
int
|
The maximum number of different text samples in one image. |
80
|
padding
|
bool
|
Whether to pad texts to max_samples. If True, the number of texts will always be equal to max_samples. |
False
|
padding_value
|
str
|
The padding text to use when padding is True. |
['']
|
Attributes:
Name | Type | Description |
---|---|---|
prompt_format |
str
|
The format string for the prompt. |
neg_samples |
Tuple[int, int]
|
The range for sampling negative texts. |
max_samples |
int
|
The maximum number of text samples. |
padding |
bool
|
Whether padding is enabled. |
padding_value |
str
|
The value used for padding. |
Examples:
>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
>>> random_load_text.prompt_format
'Object: {}'
>>> random_load_text.neg_samples
(50, 100)
>>> random_load_text.max_samples
120
Source code in ultralytics/data/augment.py
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 |
|
__call__
__call__(labels: Dict[str, Any]) -> Dict[str, Any]
Randomly sample positive and negative texts and update class indices accordingly.
This method samples positive texts based on the existing class labels in the image, and randomly selects negative texts from the remaining classes. It then updates the class indices to match the new sampled text order.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
dict
|
A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys. |
required |
Returns:
Type | Description |
---|---|
dict
|
Updated labels dictionary with new 'cls' and 'texts' entries. |
Examples:
>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
>>> updated_labels = loader(labels)
Source code in ultralytics/data/augment.py
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 |
|
ultralytics.data.augment.ClassifyLetterBox
ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
A class for resizing and padding images for classification tasks.
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). It resizes and pads images to a specified size while maintaining the original aspect ratio.
Attributes:
Name | Type | Description |
---|---|---|
h |
int
|
Target height of the image. |
w |
int
|
Target width of the image. |
auto |
bool
|
If True, automatically calculates the short side using stride. |
stride |
int
|
The stride value, used when 'auto' is True. |
Methods:
Name | Description |
---|---|
__call__ |
Apply the letterbox transformation to an input image. |
Examples:
>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(640, 640, 3)
This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and pads images to a specified size while maintaining the original aspect ratio.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int | Tuple[int, int]
|
Target size for the letterboxed image. If an int, a square image of (size, size) is created. If a tuple, it should be (height, width). |
(640, 640)
|
auto
|
bool
|
If True, automatically calculates the short side based on stride. |
False
|
stride
|
int
|
The stride value, used when 'auto' is True. |
32
|
Attributes:
Name | Type | Description |
---|---|---|
h |
int
|
Target height of the letterboxed image. |
w |
int
|
Target width of the letterboxed image. |
auto |
bool
|
Flag indicating whether to automatically calculate short side. |
stride |
int
|
Stride value for automatic short side calculation. |
Examples:
>>> transform = ClassifyLetterBox(size=224)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 |
|
__call__
__call__(im)
Resize and pad an image using the letterbox method.
This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio, then pads the resized image to match the target size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
Input image as a numpy array with shape (H, W, C). |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are the target height and width respectively. |
Examples:
>>> letterbox = ClassifyLetterBox(size=(640, 640))
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
>>> resized_image = letterbox(image)
>>> print(resized_image.shape)
(640, 640, 3)
Source code in ultralytics/data/augment.py
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 |
|
ultralytics.data.augment.CenterCrop
CenterCrop(size=640)
Apply center cropping to images for classification tasks.
This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
Attributes:
Name | Type | Description |
---|---|---|
h |
int
|
Target height of the cropped image. |
w |
int
|
Target width of the cropped image. |
Methods:
Name | Description |
---|---|
__call__ |
Apply the center crop transformation to an input image. |
Examples:
>>> transform = CenterCrop(640)
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> print(cropped_image.shape)
(640, 640, 3)
This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). It performs a center crop on input images to a specified size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int | Tuple[int, int]
|
The desired output size of the crop. If size is an int, a square crop (size, size) is made. If size is a sequence like (h, w), it is used as the output size. |
640
|
Returns:
Type | Description |
---|---|
None
|
This method initializes the object and does not return anything. |
Examples:
>>> transform = CenterCrop(224)
>>> img = np.random.rand(300, 300, 3)
>>> cropped_img = transform(img)
>>> print(cropped_img.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 |
|
__call__
__call__(im)
Apply center cropping to an input image.
This method resizes and crops the center of the image using a letterbox method. It maintains the aspect ratio of the original image while fitting it into the specified dimensions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray | Image
|
The input image as a numpy array of shape (H, W, C) or a PIL Image object. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The center-cropped and resized image as a numpy array of shape (self.h, self.w, C). |
Examples:
>>> transform = CenterCrop(size=224)
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> assert cropped_image.shape == (224, 224, 3)
Source code in ultralytics/data/augment.py
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 |
|
ultralytics.data.augment.ToTensor
ToTensor(half=False)
Convert an image from a numpy array to a PyTorch tensor.
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
Attributes:
Name | Type | Description |
---|---|---|
half |
bool
|
If True, converts the image to half precision (float16). |
Methods:
Name | Description |
---|---|
__call__ |
Apply the tensor conversion to an input image. |
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Notes
The input image is expected to be in BGR format with shape (H, W, C). The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].
This class is designed to be used as part of a transformation pipeline for image preprocessing in the Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option for half-precision (float16) conversion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
half
|
bool
|
If True, converts the tensor to half precision (float16). |
False
|
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.rand(640, 640, 3)
>>> tensor_img = transform(img)
>>> print(tensor_img.dtype)
torch.float16
Source code in ultralytics/data/augment.py
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 |
|
__call__
__call__(im)
Transform an image from a numpy array to a PyTorch tensor.
This method converts the input image from a numpy array to a PyTorch tensor, applying optional half-precision conversion and normalization. The image is transposed from HWC to CHW format and the color channels are reversed from BGR to RGB.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
Input image as a numpy array with shape (H, W, C) in BGR order. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1] with shape (C, H, W) in RGB order. |
Examples:
>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Source code in ultralytics/data/augment.py
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 |
|
ultralytics.data.augment.v8_transforms
v8_transforms(dataset, imgsz, hyp, stretch=False)
Apply a series of image transformations for training.
This function creates a composition of image augmentation techniques to prepare images for YOLO training. It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The dataset object containing image data and annotations. |
required |
imgsz
|
int
|
The target image size for resizing. |
required |
hyp
|
Namespace
|
A dictionary of hyperparameters controlling various aspects of the transformations. |
required |
stretch
|
bool
|
If True, applies stretching to the image. If False, uses LetterBox resizing. |
False
|
Returns:
Type | Description |
---|---|
Compose
|
A composition of image transformations to be applied to the dataset. |
Examples:
>>> from ultralytics.data.dataset import YOLODataset
>>> from ultralytics.utils import IterableSimpleNamespace
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
>>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
>>> augmented_data = transforms(dataset[0])
Source code in ultralytics/data/augment.py
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 |
|
ultralytics.data.augment.classify_transforms
classify_transforms(
size=224,
mean=DEFAULT_MEAN,
std=DEFAULT_STD,
interpolation="BILINEAR",
crop_fraction=None,
)
Create a composition of image transforms for classification tasks.
This function generates a sequence of torchvision transforms suitable for preprocessing images for classification models during evaluation or inference. The transforms include resizing, center cropping, conversion to tensor, and normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int | tuple
|
The target size for the transformed image. If an int, it defines the shortest edge. If a tuple, it defines (height, width). |
224
|
mean
|
tuple
|
Mean values for each RGB channel used in normalization. |
DEFAULT_MEAN
|
std
|
tuple
|
Standard deviation values for each RGB channel used in normalization. |
DEFAULT_STD
|
interpolation
|
str
|
Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'. |
'BILINEAR'
|
crop_fraction
|
float
|
Deprecated, will be removed in a future version. |
None
|
Returns:
Type | Description |
---|---|
Compose
|
A composition of torchvision transforms. |
Examples:
>>> transforms = classify_transforms(size=224)
>>> img = Image.open("path/to/image.jpg")
>>> transformed_img = transforms(img)
Source code in ultralytics/data/augment.py
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 |
|
ultralytics.data.augment.classify_augmentations
classify_augmentations(
size=224,
mean=DEFAULT_MEAN,
std=DEFAULT_STD,
scale=None,
ratio=None,
hflip=0.5,
vflip=0.0,
auto_augment=None,
hsv_h=0.015,
hsv_s=0.4,
hsv_v=0.4,
force_color_jitter=False,
erasing=0.0,
interpolation="BILINEAR",
)
Create a composition of image augmentation transforms for classification tasks.
This function generates a set of image transformations suitable for training classification models. It includes options for resizing, flipping, color jittering, auto augmentation, and random erasing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int
|
Target size for the image after transformations. |
224
|
mean
|
tuple
|
Mean values for normalization, one per channel. |
DEFAULT_MEAN
|
std
|
tuple
|
Standard deviation values for normalization, one per channel. |
DEFAULT_STD
|
scale
|
tuple | None
|
Range of size of the origin size cropped. |
None
|
ratio
|
tuple | None
|
Range of aspect ratio of the origin aspect ratio cropped. |
None
|
hflip
|
float
|
Probability of horizontal flip. |
0.5
|
vflip
|
float
|
Probability of vertical flip. |
0.0
|
auto_augment
|
str | None
|
Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None. |
None
|
hsv_h
|
float
|
Image HSV-Hue augmentation factor. |
0.015
|
hsv_s
|
float
|
Image HSV-Saturation augmentation factor. |
0.4
|
hsv_v
|
float
|
Image HSV-Value augmentation factor. |
0.4
|
force_color_jitter
|
bool
|
Whether to apply color jitter even if auto augment is enabled. |
False
|
erasing
|
float
|
Probability of random erasing. |
0.0
|
interpolation
|
str
|
Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'. |
'BILINEAR'
|
Returns:
Type | Description |
---|---|
Compose
|
A composition of image augmentation transforms. |
Examples:
>>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
>>> augmented_image = transforms(original_image)
Source code in ultralytics/data/augment.py
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 |
|