Reference for ultralytics/utils/ops.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.utils.ops.Profile
Profile(t: float = 0.0, device: Optional[device] = None)
Bases: ContextDecorator
Ultralytics Profile class for timing code execution.
Use as a decorator with @Profile() or as a context manager with 'with Profile():'. Provides accurate timing measurements with CUDA synchronization support for GPU operations.
Attributes:
Name | Type | Description |
---|---|---|
t |
float
|
Accumulated time in seconds. |
device |
device
|
Device used for model inference. |
cuda |
bool
|
Whether CUDA is being used for timing synchronization. |
Examples:
Use as a context manager to time code execution
>>> with Profile(device=device) as dt:
... pass # slow operation here
>>> print(dt) # prints "Elapsed time is 9.5367431640625e-07 s"
Use as a decorator to time function execution
>>> @Profile()
... def slow_function():
... time.sleep(0.1)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t
|
float
|
Initial accumulated time in seconds. |
0.0
|
device
|
device
|
Device used for model inference to enable CUDA synchronization. |
None
|
Source code in ultralytics/utils/ops.py
42 43 44 45 46 47 48 49 50 51 52 |
|
__enter__
__enter__()
Start timing.
Source code in ultralytics/utils/ops.py
54 55 56 57 |
|
__exit__
__exit__(type, value, traceback)
Stop timing.
Source code in ultralytics/utils/ops.py
59 60 61 62 |
|
__str__
__str__()
Return a human-readable string representing the accumulated elapsed time.
Source code in ultralytics/utils/ops.py
64 65 66 |
|
time
time()
Get current time with CUDA synchronization if applicable.
Source code in ultralytics/utils/ops.py
68 69 70 71 72 |
|
ultralytics.utils.ops.segment2box
segment2box(segment, width: int = 640, height: int = 640)
Convert segment coordinates to bounding box coordinates.
Converts a single segment label to a box label by finding the minimum and maximum x and y coordinates. Applies inside-image constraint and clips coordinates when necessary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segment
|
Tensor
|
Segment coordinates in format (N, 2) where N is number of points. |
required |
width
|
int
|
Width of the image in pixels. |
640
|
height
|
int
|
Height of the image in pixels. |
640
|
Returns:
Type | Description |
---|---|
ndarray
|
Bounding box coordinates in xyxy format [x1, y1, x2, y2]. |
Source code in ultralytics/utils/ops.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
ultralytics.utils.ops.scale_boxes
scale_boxes(
img1_shape,
boxes,
img0_shape,
ratio_pad=None,
padding: bool = True,
xywh: bool = False,
)
Rescale bounding boxes from one image shape to another.
Rescales bounding boxes from img1_shape to img0_shape, accounting for padding and aspect ratio changes. Supports both xyxy and xywh box formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img1_shape
|
tuple
|
Shape of the source image (height, width). |
required |
boxes
|
Tensor
|
Bounding boxes to rescale in format (N, 4). |
required |
img0_shape
|
tuple
|
Shape of the target image (height, width). |
required |
ratio_pad
|
tuple
|
Tuple of (ratio, pad) for scaling. If None, calculated from image shapes. |
None
|
padding
|
bool
|
Whether boxes are based on YOLO-style augmented images with padding. |
True
|
xywh
|
bool
|
Whether box format is xywh (True) or xyxy (False). |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Rescaled bounding boxes in the same format as input. |
Source code in ultralytics/utils/ops.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
ultralytics.utils.ops.make_divisible
make_divisible(x: int, divisor)
Return the nearest number that is divisible by the given divisor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
int
|
The number to make divisible. |
required |
divisor
|
int | Tensor
|
The divisor. |
required |
Returns:
Type | Description |
---|---|
int
|
The nearest number divisible by the divisor. |
Source code in ultralytics/utils/ops.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
ultralytics.utils.ops.nms_rotated
nms_rotated(boxes, scores, threshold: float = 0.45, use_triu: bool = True)
Perform NMS on oriented bounding boxes using probiou and fast-nms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
boxes
|
Tensor
|
Rotated bounding boxes with shape (N, 5) in xywhr format. |
required |
scores
|
Tensor
|
Confidence scores with shape (N,). |
required |
threshold
|
float
|
IoU threshold for NMS. |
0.45
|
use_triu
|
bool
|
Whether to use torch.triu operator for upper triangular matrix operations. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
Indices of boxes to keep after NMS. |
Source code in ultralytics/utils/ops.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
ultralytics.utils.ops.non_max_suppression
non_max_suppression(
prediction,
conf_thres: float = 0.25,
iou_thres: float = 0.45,
classes=None,
agnostic: bool = False,
multi_label: bool = False,
labels=(),
max_det: int = 300,
nc: int = 0,
max_time_img: float = 0.05,
max_nms: int = 30000,
max_wh: int = 7680,
in_place: bool = True,
rotated: bool = False,
end2end: bool = False,
return_idxs: bool = False,
)
Perform non-maximum suppression (NMS) on prediction results.
Applies NMS to filter overlapping bounding boxes based on confidence and IoU thresholds. Supports multiple detection formats including standard boxes, rotated boxes, and masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prediction
|
Tensor
|
Predictions with shape (batch_size, num_classes + 4 + num_masks, num_boxes) containing boxes, classes, and optional masks. |
required |
conf_thres
|
float
|
Confidence threshold for filtering detections. Valid values are between 0.0 and 1.0. |
0.25
|
iou_thres
|
float
|
IoU threshold for NMS filtering. Valid values are between 0.0 and 1.0. |
0.45
|
classes
|
List[int]
|
List of class indices to consider. If None, all classes are considered. |
None
|
agnostic
|
bool
|
Whether to perform class-agnostic NMS. |
False
|
multi_label
|
bool
|
Whether each box can have multiple labels. |
False
|
labels
|
List[List[Union[int, float, Tensor]]]
|
A priori labels for each image. |
()
|
max_det
|
int
|
Maximum number of detections to keep per image. |
300
|
nc
|
int
|
Number of classes. Indices after this are considered masks. |
0
|
max_time_img
|
float
|
Maximum time in seconds for processing one image. |
0.05
|
max_nms
|
int
|
Maximum number of boxes for torchvision.ops.nms(). |
30000
|
max_wh
|
int
|
Maximum box width and height in pixels. |
7680
|
in_place
|
bool
|
Whether to modify the input prediction tensor in place. |
True
|
rotated
|
bool
|
Whether to handle Oriented Bounding Boxes (OBB). |
False
|
end2end
|
bool
|
Whether the model is end-to-end and doesn't require NMS. |
False
|
return_idxs
|
bool
|
Whether to return the indices of kept detections. |
False
|
Returns:
Name | Type | Description |
---|---|---|
output |
List[Tensor]
|
List of detections per image with shape (num_boxes, 6 + num_masks) containing (x1, y1, x2, y2, confidence, class, mask1, mask2, ...). |
keepi |
List[Tensor]
|
Indices of kept detections if return_idxs=True. |
Source code in ultralytics/utils/ops.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
ultralytics.utils.ops.clip_boxes
clip_boxes(boxes, shape)
Clip bounding boxes to image boundaries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
boxes
|
Tensor | ndarray
|
Bounding boxes to clip. |
required |
shape
|
tuple
|
Image shape as (height, width). |
required |
Returns:
Type | Description |
---|---|
Tensor | ndarray
|
Clipped bounding boxes. |
Source code in ultralytics/utils/ops.py
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
ultralytics.utils.ops.clip_coords
clip_coords(coords, shape)
Clip line coordinates to image boundaries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords
|
Tensor | ndarray
|
Line coordinates to clip. |
required |
shape
|
tuple
|
Image shape as (height, width). |
required |
Returns:
Type | Description |
---|---|
Tensor | ndarray
|
Clipped coordinates. |
Source code in ultralytics/utils/ops.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
ultralytics.utils.ops.scale_image
scale_image(masks, im0_shape, ratio_pad=None)
Rescale masks to original image size.
Takes resized and padded masks and rescales them back to the original image dimensions, removing any padding that was applied during preprocessing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
ndarray
|
Resized and padded masks with shape [H, W, N] or [H, W, 3]. |
required |
im0_shape
|
tuple
|
Original image shape as (height, width). |
required |
ratio_pad
|
tuple
|
Ratio and padding values as ((ratio_h, ratio_w), (pad_h, pad_w)). |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
Rescaled masks with shape [H, W, N] matching original image dimensions. |
Source code in ultralytics/utils/ops.py
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
ultralytics.utils.ops.xyxy2xywh
xyxy2xywh(x)
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates in (x1, y1, x2, y2) format. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in (x, y, width, height) format. |
Source code in ultralytics/utils/ops.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
ultralytics.utils.ops.xywh2xyxy
xywh2xyxy(x)
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. Note: ops per 2 channels faster than per channel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates in (x, y, width, height) format. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in (x1, y1, x2, y2) format. |
Source code in ultralytics/utils/ops.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
|
ultralytics.utils.ops.xywhn2xyxy
xywhn2xyxy(x, w: int = 640, h: int = 640, padw: int = 0, padh: int = 0)
Convert normalized bounding box coordinates to pixel coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Normalized bounding box coordinates in (x, y, w, h) format. |
required |
w
|
int
|
Image width in pixels. |
640
|
h
|
int
|
Image height in pixels. |
640
|
padw
|
int
|
Padding width in pixels. |
0
|
padh
|
int
|
Padding height in pixels. |
0
|
Returns:
Name | Type | Description |
---|---|---|
y |
ndarray | Tensor
|
The coordinates of the bounding box in the format [x1, y1, x2, y2] where x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. |
Source code in ultralytics/utils/ops.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
|
ultralytics.utils.ops.xyxy2xywhn
xyxy2xywhn(x, w: int = 640, h: int = 640, clip: bool = False, eps: float = 0.0)
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y, width and height are normalized to image dimensions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates in (x1, y1, x2, y2) format. |
required |
w
|
int
|
Image width in pixels. |
640
|
h
|
int
|
Image height in pixels. |
640
|
clip
|
bool
|
Whether to clip boxes to image boundaries. |
False
|
eps
|
float
|
Minimum value for box width and height. |
0.0
|
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Normalized bounding box coordinates in (x, y, width, height) format. |
Source code in ultralytics/utils/ops.py
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
ultralytics.utils.ops.xywh2ltwh
xywh2ltwh(x)
Convert bounding box format from [x, y, w, h] to [x1, y1, w, h] where x1, y1 are top-left coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates in xywh format. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in xyltwh format. |
Source code in ultralytics/utils/ops.py
510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
|
ultralytics.utils.ops.xyxy2ltwh
xyxy2ltwh(x)
Convert bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h] format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates in xyxy format. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in xyltwh format. |
Source code in ultralytics/utils/ops.py
526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
|
ultralytics.utils.ops.ltwh2xywh
ltwh2xywh(x)
Convert bounding boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input bounding box coordinates. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in xywh format. |
Source code in ultralytics/utils/ops.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
|
ultralytics.utils.ops.xyxyxyxy2xywhr
xyxyxyxy2xywhr(x)
Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation] format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input box corners with shape (N, 8) in [xy1, xy2, xy3, xy4] format. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Converted data in [cx, cy, w, h, rotation] format with shape (N, 5). Rotation values are in radians from 0 to pi/2. |
Source code in ultralytics/utils/ops.py
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
|
ultralytics.utils.ops.xywhr2xyxyxyxy
xywhr2xyxyxyxy(x)
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4] format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Boxes in [cx, cy, w, h, rotation] format with shape (N, 5) or (B, N, 5). Rotation values should be in radians from 0 to pi/2. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Converted corner points with shape (N, 4, 2) or (B, N, 4, 2). |
Source code in ultralytics/utils/ops.py
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
ultralytics.utils.ops.ltwh2xyxy
ltwh2xyxy(x)
Convert bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray | Tensor
|
Input bounding box coordinates. |
required |
Returns:
Type | Description |
---|---|
ndarray | Tensor
|
Bounding box coordinates in xyxy format. |
Source code in ultralytics/utils/ops.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
ultralytics.utils.ops.segments2boxes
segments2boxes(segments)
Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segments
|
list
|
List of segments where each segment is a list of points, each point is [x, y] coordinates. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Bounding box coordinates in xywh format. |
Source code in ultralytics/utils/ops.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
ultralytics.utils.ops.resample_segments
resample_segments(segments, n: int = 1000)
Resample segments to n points each using linear interpolation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segments
|
list
|
List of (N, 2) arrays where N is the number of points in each segment. |
required |
n
|
int
|
Number of points to resample each segment to. |
1000
|
Returns:
Type | Description |
---|---|
list
|
Resampled segments with n points each. |
Source code in ultralytics/utils/ops.py
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
|
ultralytics.utils.ops.crop_mask
crop_mask(masks, boxes)
Crop masks to bounding box regions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
Tensor
|
Masks with shape (N, H, W). |
required |
boxes
|
Tensor
|
Bounding box coordinates with shape (N, 4) in relative point form. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Cropped masks. |
Source code in ultralytics/utils/ops.py
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
|
ultralytics.utils.ops.process_mask
process_mask(protos, masks_in, bboxes, shape, upsample: bool = False)
Apply masks to bounding boxes using mask head output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
protos
|
Tensor
|
Mask prototypes with shape (mask_dim, mask_h, mask_w). |
required |
masks_in
|
Tensor
|
Mask coefficients with shape (N, mask_dim) where N is number of masks after NMS. |
required |
bboxes
|
Tensor
|
Bounding boxes with shape (N, 4) where N is number of masks after NMS. |
required |
shape
|
tuple
|
Input image size as (height, width). |
required |
upsample
|
bool
|
Whether to upsample masks to original image size. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w are the height and width of the input image. The mask is applied to the bounding boxes. |
Source code in ultralytics/utils/ops.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
|
ultralytics.utils.ops.process_mask_native
process_mask_native(protos, masks_in, bboxes, shape)
Apply masks to bounding boxes using mask head output with native upsampling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
protos
|
Tensor
|
Mask prototypes with shape (mask_dim, mask_h, mask_w). |
required |
masks_in
|
Tensor
|
Mask coefficients with shape (N, mask_dim) where N is number of masks after NMS. |
required |
bboxes
|
Tensor
|
Bounding boxes with shape (N, 4) where N is number of masks after NMS. |
required |
shape
|
tuple
|
Input image size as (height, width). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Binary mask tensor with shape (H, W, N). |
Source code in ultralytics/utils/ops.py
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
|
ultralytics.utils.ops.scale_masks
scale_masks(masks, shape, padding: bool = True)
Rescale segment masks to target shape.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
Tensor
|
Masks with shape (N, C, H, W). |
required |
shape
|
tuple
|
Target height and width as (height, width). |
required |
padding
|
bool
|
Whether masks are based on YOLO-style augmented images with padding. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
Rescaled masks. |
Source code in ultralytics/utils/ops.py
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
|
ultralytics.utils.ops.scale_coords
scale_coords(
img1_shape,
coords,
img0_shape,
ratio_pad=None,
normalize: bool = False,
padding: bool = True,
)
Rescale segment coordinates from img1_shape to img0_shape.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img1_shape
|
tuple
|
Shape of the source image. |
required |
coords
|
Tensor
|
Coordinates to scale with shape (N, 2). |
required |
img0_shape
|
tuple
|
Shape of the target image. |
required |
ratio_pad
|
tuple
|
Ratio and padding values as ((ratio_h, ratio_w), (pad_h, pad_w)). |
None
|
normalize
|
bool
|
Whether to normalize coordinates to range [0, 1]. |
False
|
padding
|
bool
|
Whether coordinates are based on YOLO-style augmented images with padding. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
Scaled coordinates. |
Source code in ultralytics/utils/ops.py
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
|
ultralytics.utils.ops.regularize_rboxes
regularize_rboxes(rboxes)
Regularize rotated bounding boxes to range [0, pi/2].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rboxes
|
Tensor
|
Input rotated boxes with shape (N, 5) in xywhr format. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Regularized rotated boxes. |
Source code in ultralytics/utils/ops.py
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
|
ultralytics.utils.ops.masks2segments
masks2segments(masks, strategy: str = 'all')
Convert masks to segments using contour detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
Tensor
|
Binary masks with shape (batch_size, 160, 160). |
required |
strategy
|
str
|
Segmentation strategy, either 'all' or 'largest'. |
'all'
|
Returns:
Type | Description |
---|---|
list
|
List of segment masks as float32 arrays. |
Source code in ultralytics/utils/ops.py
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
|
ultralytics.utils.ops.convert_torch2numpy_batch
convert_torch2numpy_batch(batch: Tensor) -> np.ndarray
Convert a batch of FP32 torch tensors to NumPy uint8 arrays, changing from BCHW to BHWC layout.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Tensor
|
Input tensor batch with shape (Batch, Channels, Height, Width) and dtype torch.float32. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Output NumPy array batch with shape (Batch, Height, Width, Channels) and dtype uint8. |
Source code in ultralytics/utils/ops.py
851 852 853 854 855 856 857 858 859 860 861 |
|
ultralytics.utils.ops.clean_str
clean_str(s)
Clean a string by replacing special characters with '_' character.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
str
|
A string needing special characters replaced. |
required |
Returns:
Type | Description |
---|---|
str
|
A string with special characters replaced by an underscore _. |
Source code in ultralytics/utils/ops.py
864 865 866 867 868 869 870 871 872 873 874 |
|
ultralytics.utils.ops.empty_like
empty_like(x)
Create empty torch.Tensor or np.ndarray with same shape as input and float32 dtype.
Source code in ultralytics/utils/ops.py
877 878 879 880 881 |
|