Skip to content

Reference for ultralytics/utils/export.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/export.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.export.export_onnx

export_onnx(
    torch_model: Module,
    im: Tensor,
    onnx_file: str,
    opset: int = 14,
    input_names: List[str] = ["images"],
    output_names: List[str] = ["output0"],
    dynamic: Union[bool, Dict] = False,
) -> None

Export a PyTorch model to ONNX format.

Parameters:

Name Type Description Default
torch_model Module

The PyTorch model to export.

required
im Tensor

Example input tensor for the model.

required
onnx_file str

Path to save the exported ONNX file.

required
opset int

ONNX opset version to use for export.

14
input_names List[str]

List of input tensor names.

['images']
output_names List[str]

List of output tensor names.

['output0']
dynamic bool | Dict

Whether to enable dynamic axes.

False
Notes

Setting do_constant_folding=True may cause issues with DNN inference for torch>=1.12.

Source code in ultralytics/utils/export.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def export_onnx(
    torch_model: torch.nn.Module,
    im: torch.Tensor,
    onnx_file: str,
    opset: int = 14,
    input_names: List[str] = ["images"],
    output_names: List[str] = ["output0"],
    dynamic: Union[bool, Dict] = False,
) -> None:
    """
    Export a PyTorch model to ONNX format.

    Args:
        torch_model (torch.nn.Module): The PyTorch model to export.
        im (torch.Tensor): Example input tensor for the model.
        onnx_file (str): Path to save the exported ONNX file.
        opset (int): ONNX opset version to use for export.
        input_names (List[str]): List of input tensor names.
        output_names (List[str]): List of output tensor names.
        dynamic (bool | Dict, optional): Whether to enable dynamic axes.

    Notes:
        Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
    """
    torch.onnx.export(
        torch_model,
        im,
        onnx_file,
        verbose=False,
        opset_version=opset,
        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
        input_names=input_names,
        output_names=output_names,
        dynamic_axes=dynamic or None,
    )





ultralytics.utils.export.export_engine

export_engine(
    onnx_file: str,
    engine_file: Optional[str] = None,
    workspace: Optional[int] = None,
    half: bool = False,
    int8: bool = False,
    dynamic: bool = False,
    shape: Tuple[int, int, int, int] = (1, 3, 640, 640),
    dla: Optional[int] = None,
    dataset=None,
    metadata: Optional[Dict] = None,
    verbose: bool = False,
    prefix: str = "",
) -> None

Export a YOLO model to TensorRT engine format.

Parameters:

Name Type Description Default
onnx_file str

Path to the ONNX file to be converted.

required
engine_file str

Path to save the generated TensorRT engine file.

None
workspace int

Workspace size in GB for TensorRT.

None
half bool

Enable FP16 precision.

False
int8 bool

Enable INT8 precision.

False
dynamic bool

Enable dynamic input shapes.

False
shape Tuple[int, int, int, int]

Input shape (batch, channels, height, width).

(1, 3, 640, 640)
dla int

DLA core to use (Jetson devices only).

None
dataset InfiniteDataLoader

Dataset for INT8 calibration.

None
metadata Dict

Metadata to include in the engine file.

None
verbose bool

Enable verbose logging.

False
prefix str

Prefix for log messages.

''

Raises:

Type Description
ValueError

If DLA is enabled on non-Jetson devices or required precision is not set.

RuntimeError

If the ONNX file cannot be parsed.

Notes

TensorRT version compatibility is handled for workspace size and engine building. INT8 calibration requires a dataset and generates a calibration cache. Metadata is serialized and written to the engine file if provided.

Source code in ultralytics/utils/export.py
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def export_engine(
    onnx_file: str,
    engine_file: Optional[str] = None,
    workspace: Optional[int] = None,
    half: bool = False,
    int8: bool = False,
    dynamic: bool = False,
    shape: Tuple[int, int, int, int] = (1, 3, 640, 640),
    dla: Optional[int] = None,
    dataset=None,
    metadata: Optional[Dict] = None,
    verbose: bool = False,
    prefix: str = "",
) -> None:
    """
    Export a YOLO model to TensorRT engine format.

    Args:
        onnx_file (str): Path to the ONNX file to be converted.
        engine_file (str, optional): Path to save the generated TensorRT engine file.
        workspace (int, optional): Workspace size in GB for TensorRT.
        half (bool, optional): Enable FP16 precision.
        int8 (bool, optional): Enable INT8 precision.
        dynamic (bool, optional): Enable dynamic input shapes.
        shape (Tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
        dla (int, optional): DLA core to use (Jetson devices only).
        dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
        metadata (Dict, optional): Metadata to include in the engine file.
        verbose (bool, optional): Enable verbose logging.
        prefix (str, optional): Prefix for log messages.

    Raises:
        ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
        RuntimeError: If the ONNX file cannot be parsed.

    Notes:
        TensorRT version compatibility is handled for workspace size and engine building.
        INT8 calibration requires a dataset and generates a calibration cache.
        Metadata is serialized and written to the engine file if provided.
    """
    import tensorrt as trt  # noqa

    engine_file = engine_file or Path(onnx_file).with_suffix(".engine")

    logger = trt.Logger(trt.Logger.INFO)
    if verbose:
        logger.min_severity = trt.Logger.Severity.VERBOSE

    # Engine builder
    builder = trt.Builder(logger)
    config = builder.create_builder_config()
    workspace = int((workspace or 0) * (1 << 30))
    is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10  # is TensorRT >= 10
    if is_trt10 and workspace > 0:
        config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
    elif workspace > 0:  # TensorRT versions 7, 8
        config.max_workspace_size = workspace
    flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    network = builder.create_network(flag)
    half = builder.platform_has_fast_fp16 and half
    int8 = builder.platform_has_fast_int8 and int8

    # Optionally switch to DLA if enabled
    if dla is not None:
        if not IS_JETSON:
            raise ValueError("DLA is only available on NVIDIA Jetson devices")
        LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
        if not half and not int8:
            raise ValueError(
                "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
            )
        config.default_device_type = trt.DeviceType.DLA
        config.DLA_core = int(dla)
        config.set_flag(trt.BuilderFlag.GPU_FALLBACK)

    # Read ONNX file
    parser = trt.OnnxParser(network, logger)
    if not parser.parse_from_file(onnx_file):
        raise RuntimeError(f"failed to load ONNX file: {onnx_file}")

    # Network inputs
    inputs = [network.get_input(i) for i in range(network.num_inputs)]
    outputs = [network.get_output(i) for i in range(network.num_outputs)]
    for inp in inputs:
        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
    for out in outputs:
        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

    if dynamic:
        if shape[0] <= 1:
            LOGGER.warning(f"{prefix} 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
        profile = builder.create_optimization_profile()
        min_shape = (1, shape[1], 32, 32)  # minimum input shape
        max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:]))  # max input shape
        for inp in inputs:
            profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
        config.add_optimization_profile(profile)

    LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
    if int8:
        config.set_flag(trt.BuilderFlag.INT8)
        config.set_calibration_profile(profile)
        config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED

        class EngineCalibrator(trt.IInt8Calibrator):
            """
            Custom INT8 calibrator for TensorRT engine optimization.

            This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
            using a dataset. It handles batch generation, caching, and calibration algorithm selection.

            Attributes:
                dataset: Dataset for calibration.
                data_iter: Iterator over the calibration dataset.
                algo (trt.CalibrationAlgoType): Calibration algorithm type.
                batch (int): Batch size for calibration.
                cache (Path): Path to save the calibration cache.

            Methods:
                get_algorithm: Get the calibration algorithm to use.
                get_batch_size: Get the batch size to use for calibration.
                get_batch: Get the next batch to use for calibration.
                read_calibration_cache: Use existing cache instead of calibrating again.
                write_calibration_cache: Write calibration cache to disk.
            """

            def __init__(
                self,
                dataset,  # ultralytics.data.build.InfiniteDataLoader
                cache: str = "",
            ) -> None:
                """Initialize the INT8 calibrator with dataset and cache path."""
                trt.IInt8Calibrator.__init__(self)
                self.dataset = dataset
                self.data_iter = iter(dataset)
                self.algo = trt.CalibrationAlgoType.MINMAX_CALIBRATION
                self.batch = dataset.batch_size
                self.cache = Path(cache)

            def get_algorithm(self) -> trt.CalibrationAlgoType:
                """Get the calibration algorithm to use."""
                return self.algo

            def get_batch_size(self) -> int:
                """Get the batch size to use for calibration."""
                return self.batch or 1

            def get_batch(self, names) -> Optional[List[int]]:
                """Get the next batch to use for calibration, as a list of device memory pointers."""
                try:
                    im0s = next(self.data_iter)["img"] / 255.0
                    im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
                    return [int(im0s.data_ptr())]
                except StopIteration:
                    # Return None to signal to TensorRT there is no calibration data remaining
                    return None

            def read_calibration_cache(self) -> Optional[bytes]:
                """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
                if self.cache.exists() and self.cache.suffix == ".cache":
                    return self.cache.read_bytes()

            def write_calibration_cache(self, cache: bytes) -> None:
                """Write calibration cache to disk."""
                _ = self.cache.write_bytes(cache)

        # Load dataset w/ builder (for batching) and calibrate
        config.int8_calibrator = EngineCalibrator(
            dataset=dataset,
            cache=str(Path(onnx_file).with_suffix(".cache")),
        )

    elif half:
        config.set_flag(trt.BuilderFlag.FP16)

    # Write file
    build = builder.build_serialized_network if is_trt10 else builder.build_engine
    with build(network, config) as engine, open(engine_file, "wb") as t:
        # Metadata
        if metadata is not None:
            meta = json.dumps(metadata)
            t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
            t.write(meta.encode())
        # Model
        t.write(engine if is_trt10 else engine.serialize())





📅 Created 1 month ago ✏️ Updated 1 month ago