Reference for ultralytics/utils/benchmarks.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/benchmarks.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.utils.benchmarks.RF100Benchmark
RF100Benchmark()
Benchmark YOLO model performance across various formats for speed and accuracy.
This class provides functionality to benchmark YOLO models on the RF100 dataset collection.
Attributes:
Name | Type | Description |
---|---|---|
ds_names |
List[str]
|
Names of datasets used for benchmarking. |
ds_cfg_list |
List[Path]
|
List of paths to dataset configuration files. |
rf |
Roboflow
|
Roboflow instance for accessing datasets. |
val_metrics |
List[str]
|
Metrics used for validation. |
Methods:
Name | Description |
---|---|
set_key |
Set Roboflow API key for accessing datasets. |
parse_dataset |
Parse dataset links and download datasets. |
fix_yaml |
Fix train and validation paths in YAML files. |
evaluate |
Evaluate model performance on validation results. |
Source code in ultralytics/utils/benchmarks.py
225 226 227 228 229 230 |
|
evaluate
evaluate(yaml_path: str, val_log_file: str, eval_log_file: str, list_ind: int)
Evaluate model performance on validation results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yaml_path
|
str
|
Path to the YAML configuration file. |
required |
val_log_file
|
str
|
Path to the validation log file. |
required |
eval_log_file
|
str
|
Path to the evaluation log file. |
required |
list_ind
|
int
|
Index of the current dataset in the list. |
required |
Returns:
Type | Description |
---|---|
float
|
The mean average precision (mAP) value for the evaluated model. |
Examples:
Evaluate a model on a specific dataset
>>> benchmark = RF100Benchmark()
>>> benchmark.evaluate("path/to/data.yaml", "path/to/val_log.txt", "path/to/eval_log.txt", 0)
Source code in ultralytics/utils/benchmarks.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
fix_yaml
staticmethod
fix_yaml(path: Path)
Fix the train and validation paths in a given YAML file.
Source code in ultralytics/utils/benchmarks.py
286 287 288 289 290 291 292 |
|
parse_dataset
parse_dataset(ds_link_txt: str = 'datasets_links.txt')
Parse dataset links and download datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds_link_txt
|
str
|
Path to the file containing dataset links. |
'datasets_links.txt'
|
Returns:
Name | Type | Description |
---|---|---|
ds_names |
List[str]
|
List of dataset names. |
ds_cfg_list |
List[Path]
|
List of paths to dataset configuration files. |
Examples:
>>> benchmark = RF100Benchmark()
>>> benchmark.set_key("api_key")
>>> benchmark.parse_dataset("datasets_links.txt")
Source code in ultralytics/utils/benchmarks.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
set_key
set_key(api_key: str)
Set Roboflow API key for processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
api_key
|
str
|
The API key. |
required |
Examples:
Set the Roboflow API key for accessing datasets:
>>> benchmark = RF100Benchmark()
>>> benchmark.set_key("your_roboflow_api_key")
Source code in ultralytics/utils/benchmarks.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
ultralytics.utils.benchmarks.ProfileModels
ProfileModels(
paths: List[str],
num_timed_runs: int = 100,
num_warmup_runs: int = 10,
min_time: float = 60,
imgsz: int = 640,
half: bool = True,
trt: bool = True,
device: Optional[Union[device, str]] = None,
)
ProfileModels class for profiling different models on ONNX and TensorRT.
This class profiles the performance of different models, returning results such as model speed and FLOPs.
Attributes:
Name | Type | Description |
---|---|---|
paths |
List[str]
|
Paths of the models to profile. |
num_timed_runs |
int
|
Number of timed runs for the profiling. |
num_warmup_runs |
int
|
Number of warmup runs before profiling. |
min_time |
float
|
Minimum number of seconds to profile for. |
imgsz |
int
|
Image size used in the models. |
half |
bool
|
Flag to indicate whether to use FP16 half-precision for TensorRT profiling. |
trt |
bool
|
Flag to indicate whether to profile using TensorRT. |
device |
device
|
Device used for profiling. |
Methods:
Name | Description |
---|---|
run |
Profile YOLO models for speed and accuracy across various formats. |
get_files |
Get all relevant model files. |
get_onnx_model_info |
Extract metadata from an ONNX model. |
iterative_sigma_clipping |
Apply sigma clipping to remove outliers. |
profile_tensorrt_model |
Profile a TensorRT model. |
profile_onnx_model |
Profile an ONNX model. |
generate_table_row |
Generate a table row with model metrics. |
generate_results_dict |
Generate a dictionary of profiling results. |
print_table |
Print a formatted table of results. |
Examples:
Profile models and print results
>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.run()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paths
|
List[str]
|
List of paths of the models to be profiled. |
required |
num_timed_runs
|
int
|
Number of timed runs for the profiling. |
100
|
num_warmup_runs
|
int
|
Number of warmup runs before the actual profiling starts. |
10
|
min_time
|
float
|
Minimum time in seconds for profiling a model. |
60
|
imgsz
|
int
|
Size of the image used during profiling. |
640
|
half
|
bool
|
Flag to indicate whether to use FP16 half-precision for TensorRT profiling. |
True
|
trt
|
bool
|
Flag to indicate whether to profile using TensorRT. |
True
|
device
|
device | str | None
|
Device used for profiling. If None, it is determined automatically. |
None
|
Notes
FP16 'half' argument option removed for ONNX as slower on CPU than FP32.
Examples:
Initialize and profile models
>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.run()
Source code in ultralytics/utils/benchmarks.py
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
|
generate_results_dict
staticmethod
generate_results_dict(
model_name: str,
t_onnx: Tuple[float, float],
t_engine: Tuple[float, float],
model_info: Tuple[float, float, float, float],
)
Generate a dictionary of profiling results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model. |
required |
t_onnx
|
tuple
|
ONNX model inference time statistics (mean, std). |
required |
t_engine
|
tuple
|
TensorRT engine inference time statistics (mean, std). |
required |
model_info
|
tuple
|
Model information (layers, params, gradients, flops). |
required |
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing profiling results. |
Source code in ultralytics/utils/benchmarks.py
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
generate_table_row
generate_table_row(
model_name: str,
t_onnx: Tuple[float, float],
t_engine: Tuple[float, float],
model_info: Tuple[float, float, float, float],
)
Generate a table row string with model performance metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the model. |
required |
t_onnx
|
tuple
|
ONNX model inference time statistics (mean, std). |
required |
t_engine
|
tuple
|
TensorRT engine inference time statistics (mean, std). |
required |
model_info
|
tuple
|
Model information (layers, params, gradients, flops). |
required |
Returns:
Type | Description |
---|---|
str
|
Formatted table row string with model metrics. |
Source code in ultralytics/utils/benchmarks.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
|
get_files
get_files()
Return a list of paths for all relevant model files given by the user.
Returns:
Type | Description |
---|---|
List[Path]
|
List of Path objects for the model files. |
Source code in ultralytics/utils/benchmarks.py
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
|
get_onnx_model_info
staticmethod
get_onnx_model_info(onnx_file: str)
Extract metadata from an ONNX model file including parameters, GFLOPs, and input shape.
Source code in ultralytics/utils/benchmarks.py
504 505 506 507 |
|
iterative_sigma_clipping
staticmethod
iterative_sigma_clipping(data: ndarray, sigma: float = 2, max_iters: int = 3)
Apply iterative sigma clipping to data to remove outliers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
Input data array. |
required |
sigma
|
float
|
Number of standard deviations to use for clipping. |
2
|
max_iters
|
int
|
Maximum number of iterations for the clipping process. |
3
|
Returns:
Type | Description |
---|---|
ndarray
|
Clipped data array with outliers removed. |
Source code in ultralytics/utils/benchmarks.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
|
print_table
staticmethod
print_table(table_rows: List[str])
Print a formatted table of model profiling results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_rows
|
List[str]
|
List of formatted table row strings. |
required |
Source code in ultralytics/utils/benchmarks.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
|
profile_onnx_model
profile_onnx_model(onnx_file: str, eps: float = 0.001)
Profile an ONNX model, measuring average inference time and standard deviation across multiple runs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
onnx_file
|
str
|
Path to the ONNX model file. |
required |
eps
|
float
|
Small epsilon value to prevent division by zero. |
0.001
|
Returns:
Name | Type | Description |
---|---|---|
mean_time |
float
|
Mean inference time in milliseconds. |
std_time |
float
|
Standard deviation of inference time in milliseconds. |
Source code in ultralytics/utils/benchmarks.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
profile_tensorrt_model
profile_tensorrt_model(engine_file: str, eps: float = 0.001)
Profile YOLO model performance with TensorRT, measuring average run time and standard deviation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine_file
|
str
|
Path to the TensorRT engine file. |
required |
eps
|
float
|
Small epsilon value to prevent division by zero. |
0.001
|
Returns:
Name | Type | Description |
---|---|---|
mean_time |
float
|
Mean inference time in milliseconds. |
std_time |
float
|
Standard deviation of inference time in milliseconds. |
Source code in ultralytics/utils/benchmarks.py
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
|
run
run()
Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.
Returns:
Type | Description |
---|---|
List[dict]
|
List of dictionaries containing profiling results for each model. |
Examples:
Profile models and print results
>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
>>> results = profiler.run()
Source code in ultralytics/utils/benchmarks.py
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
|
ultralytics.utils.benchmarks.benchmark
benchmark(
model=WEIGHTS_DIR / "yolo11n.pt",
data=None,
imgsz=160,
half=False,
int8=False,
device="cpu",
verbose=False,
eps=0.001,
format="",
**kwargs
)
Benchmark a YOLO model across different formats for speed and accuracy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | Path
|
Path to the model file or directory. |
WEIGHTS_DIR / 'yolo11n.pt'
|
data
|
str | None
|
Dataset to evaluate on, inherited from TASK2DATA if not passed. |
None
|
imgsz
|
int
|
Image size for the benchmark. |
160
|
half
|
bool
|
Use half-precision for the model if True. |
False
|
int8
|
bool
|
Use int8-precision for the model if True. |
False
|
device
|
str
|
Device to run the benchmark on, either 'cpu' or 'cuda'. |
'cpu'
|
verbose
|
bool | float
|
If True or a float, assert benchmarks pass with given metric. |
False
|
eps
|
float
|
Epsilon value for divide by zero prevention. |
0.001
|
format
|
str
|
Export format for benchmarking. If not supplied all formats are benchmarked. |
''
|
**kwargs
|
Any
|
Additional keyword arguments for exporter. |
{}
|
Returns:
Type | Description |
---|---|
DataFrame
|
A pandas DataFrame with benchmark results for each format, including file size, metric, and inference time. |
Examples:
Benchmark a YOLO model with default settings:
>>> from ultralytics.utils.benchmarks import benchmark
>>> benchmark(model="yolo11n.pt", imgsz=640)
Source code in ultralytics/utils/benchmarks.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|