Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
Attributes:
Name |
Type |
Description |
method |
str
|
The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
downscale |
int
|
Factor by which to downscale the frames for processing.
|
prevFrame |
ndarray
|
Previous frame for tracking.
|
prevKeyPoints |
List
|
Keypoints from the previous frame.
|
prevDescriptors |
ndarray
|
Descriptors from the previous frame.
|
initializedFirstFrame |
bool
|
Flag indicating if the first frame has been processed.
|
Methods:
Name |
Description |
apply |
Apply the chosen method to a raw frame and optionally use provided detections.
|
apply_ecc |
Apply the ECC algorithm to a raw frame.
|
apply_features |
Apply feature-based methods like ORB or SIFT to a raw frame.
|
apply_sparseoptflow |
Apply the Sparse Optical Flow method to a raw frame.
|
reset_params |
Reset the internal parameters of the GMC object.
|
Examples:
Create a GMC object and apply it to a frame
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
>>> frame = np.array([[1, 2, 3], [4, 5, 6]])
>>> processed_frame = gmc.apply(frame)
>>> print(processed_frame)
array([[1, 2, 3],
[4, 5, 6]])
Parameters:
Name |
Type |
Description |
Default |
method
|
str
|
The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
'sparseOptFlow'
|
downscale
|
int
|
Downscale factor for processing frames.
|
2
|
Examples:
Initialize a GMC object with the 'sparseOptFlow' method and a downscale factor of 2
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
Source code in ultralytics/trackers/utils/gmc.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 | def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
"""
Initialize a Generalized Motion Compensation (GMC) object with tracking method and downscale factor.
Args:
method (str): The tracking method to use. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
downscale (int): Downscale factor for processing frames.
Examples:
Initialize a GMC object with the 'sparseOptFlow' method and a downscale factor of 2
>>> gmc = GMC(method="sparseOptFlow", downscale=2)
"""
super().__init__()
self.method = method
self.downscale = max(1, downscale)
if self.method == "orb":
self.detector = cv2.FastFeatureDetector_create(20)
self.extractor = cv2.ORB_create()
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
elif self.method == "sift":
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
elif self.method == "ecc":
number_of_iterations = 5000
termination_eps = 1e-6
self.warp_mode = cv2.MOTION_EUCLIDEAN
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
elif self.method == "sparseOptFlow":
self.feature_params = dict(
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
)
elif self.method in {"none", "None", None}:
self.method = None
else:
raise ValueError(f"Unknown GMC method: {method}")
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False
|
apply
apply(raw_frame: ndarray, detections: Optional[List] = None) -> np.ndarray
Apply object detection on a raw frame using the specified method.
Parameters:
Name |
Type |
Description |
Default |
raw_frame
|
ndarray
|
The raw frame to be processed, with shape (H, W, C).
|
required
|
detections
|
List
|
List of detections to be used in the processing.
|
None
|
Returns:
Type |
Description |
ndarray
|
Transformation matrix with shape (2, 3).
|
Examples:
>>> gmc = GMC(method="sparseOptFlow")
>>> raw_frame = np.random.rand(480, 640, 3)
>>> transformation_matrix = gmc.apply(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
Source code in ultralytics/trackers/utils/gmc.py
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117 | def apply(self, raw_frame: np.ndarray, detections: Optional[List] = None) -> np.ndarray:
"""
Apply object detection on a raw frame using the specified method.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
detections (List, optional): List of detections to be used in the processing.
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="sparseOptFlow")
>>> raw_frame = np.random.rand(480, 640, 3)
>>> transformation_matrix = gmc.apply(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
"""
if self.method in {"orb", "sift"}:
return self.apply_features(raw_frame, detections)
elif self.method == "ecc":
return self.apply_ecc(raw_frame)
elif self.method == "sparseOptFlow":
return self.apply_sparseoptflow(raw_frame)
else:
return np.eye(2, 3)
|
apply_ecc
apply_ecc(raw_frame: ndarray) -> np.ndarray
Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
Parameters:
Name |
Type |
Description |
Default |
raw_frame
|
ndarray
|
The raw frame to be processed, with shape (H, W, C).
|
required
|
Returns:
Type |
Description |
ndarray
|
Transformation matrix with shape (2, 3).
|
Examples:
>>> gmc = GMC(method="ecc")
>>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(processed_frame)
[[1. 0. 0.]
[0. 1. 0.]]
Source code in ultralytics/trackers/utils/gmc.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157 | def apply_ecc(self, raw_frame: np.ndarray) -> np.ndarray:
"""
Apply the ECC (Enhanced Correlation Coefficient) algorithm to a raw frame for motion compensation.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="ecc")
>>> processed_frame = gmc.apply_ecc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(processed_frame)
[[1. 0. 0.]
[0. 1. 0.]]
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3, dtype=np.float32)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
# Handle first frame initialization
if not self.initializedFirstFrame:
self.prevFrame = frame.copy()
self.initializedFirstFrame = True
return H
# Run the ECC algorithm to find transformation matrix
try:
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
except Exception as e:
LOGGER.warning(f"find transform failed. Set warp as identity {e}")
return H
|
apply_features
apply_features(
raw_frame: ndarray, detections: Optional[List] = None
) -> np.ndarray
Apply feature-based methods like ORB or SIFT to a raw frame.
Parameters:
Name |
Type |
Description |
Default |
raw_frame
|
ndarray
|
The raw frame to be processed, with shape (H, W, C).
|
required
|
detections
|
List
|
List of detections to be used in the processing.
|
None
|
Returns:
Type |
Description |
ndarray
|
Transformation matrix with shape (2, 3).
|
Examples:
>>> gmc = GMC(method="orb")
>>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> transformation_matrix = gmc.apply_features(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
Source code in ultralytics/trackers/utils/gmc.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275 | def apply_features(self, raw_frame: np.ndarray, detections: Optional[List] = None) -> np.ndarray:
"""
Apply feature-based methods like ORB or SIFT to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
detections (List, optional): List of detections to be used in the processing.
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC(method="orb")
>>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> transformation_matrix = gmc.apply_features(raw_frame)
>>> print(transformation_matrix.shape)
(2, 3)
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
width = width // self.downscale
height = height // self.downscale
# Create mask for keypoint detection, excluding border regions
mask = np.zeros_like(frame)
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
# Exclude detection regions from mask to avoid tracking detected objects
if detections is not None:
for det in detections:
tlbr = (det[:4] / self.downscale).astype(np.int_)
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
# Find keypoints and compute descriptors
keypoints = self.detector.detect(frame, mask)
keypoints, descriptors = self.extractor.compute(frame, keypoints)
# Handle first frame initialization
if not self.initializedFirstFrame:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
self.initializedFirstFrame = True
return H
# Match descriptors between previous and current frame
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
# Filter matches based on spatial distance constraints
matches = []
spatialDistances = []
maxSpatialDistance = 0.25 * np.array([width, height])
# Handle empty matches case
if len(knnMatches) == 0:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
# Apply Lowe's ratio test and spatial distance filtering
for m, n in knnMatches:
if m.distance < 0.9 * n.distance:
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
currKeyPointLocation = keypoints[m.trainIdx].pt
spatialDistance = (
prevKeyPointLocation[0] - currKeyPointLocation[0],
prevKeyPointLocation[1] - currKeyPointLocation[1],
)
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
):
spatialDistances.append(spatialDistance)
matches.append(m)
# Filter outliers using statistical analysis
meanSpatialDistances = np.mean(spatialDistances, 0)
stdSpatialDistances = np.std(spatialDistances, 0)
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
# Extract good matches and corresponding points
goodMatches = []
prevPoints = []
currPoints = []
for i in range(len(matches)):
if inliers[i, 0] and inliers[i, 1]:
goodMatches.append(matches[i])
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
currPoints.append(keypoints[matches[i].trainIdx].pt)
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Estimate transformation matrix using RANSAC
if prevPoints.shape[0] > 4:
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
# Scale translation components back to original resolution
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("not enough matching points")
# Store current frame data for next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
|
apply_sparseoptflow
apply_sparseoptflow(raw_frame: ndarray) -> np.ndarray
Apply Sparse Optical Flow method to a raw frame.
Parameters:
Name |
Type |
Description |
Default |
raw_frame
|
ndarray
|
The raw frame to be processed, with shape (H, W, C).
|
required
|
Returns:
Type |
Description |
ndarray
|
Transformation matrix with shape (2, 3).
|
Examples:
>>> gmc = GMC()
>>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(result)
[[1. 0. 0.]
[0. 1. 0.]]
Source code in ultralytics/trackers/utils/gmc.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342 | def apply_sparseoptflow(self, raw_frame: np.ndarray) -> np.ndarray:
"""
Apply Sparse Optical Flow method to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed, with shape (H, W, C).
Returns:
(np.ndarray): Transformation matrix with shape (2, 3).
Examples:
>>> gmc = GMC()
>>> result = gmc.apply_sparseoptflow(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
>>> print(result)
[[1. 0. 0.]
[0. 1. 0.]]
"""
height, width, c = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) if c == 3 else raw_frame
H = np.eye(2, 3)
# Downscale image for computational efficiency
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
# Find good features to track
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
# Handle first frame initialization
if not self.initializedFirstFrame or self.prevKeyPoints is None:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.initializedFirstFrame = True
return H
# Calculate optical flow using Lucas-Kanade method
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
# Extract successfully tracked points
prevPoints = []
currPoints = []
for i in range(len(status)):
if status[i]:
prevPoints.append(self.prevKeyPoints[i])
currPoints.append(matchedKeypoints[i])
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Estimate transformation matrix using RANSAC
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == currPoints.shape[0]):
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
# Scale translation components back to original resolution
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("not enough matching points")
# Store current frame data for next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
return H
|
reset_params
Reset the internal parameters including previous frame, keypoints, and descriptors.
Source code in ultralytics/trackers/utils/gmc.py
| def reset_params(self) -> None:
"""Reset the internal parameters including previous frame, keypoints, and descriptors."""
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False
|