Reference for ultralytics/nn/tasks.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/tasks.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.nn.tasks.BaseModel
Bases: Module
Base class for all YOLO models in the Ultralytics family.
This class provides common functionality for YOLO models including forward pass handling, model fusion, information display, and weight loading capabilities.
Attributes:
Name | Type | Description |
---|---|---|
model |
Module
|
The neural network model. |
save |
list
|
List of layer indices to save outputs from. |
stride |
Tensor
|
Model stride values. |
Methods:
Name | Description |
---|---|
forward |
Perform forward pass for training or inference. |
predict |
Perform inference on input tensor. |
fuse |
Fuse Conv2d and BatchNorm2d layers for optimization. |
info |
Print model information. |
load |
Load weights into the model. |
loss |
Compute loss for training. |
Examples:
Create a BaseModel instance
>>> model = BaseModel()
>>> model.info() # Display model information
forward
forward(x, *args, **kwargs)
Perform forward pass of the model for either training or inference.
If x is a dict, calculates and returns the loss for training. Otherwise, returns predictions for inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | dict
|
Input tensor for inference, or dict with image tensor and labels for training. |
required |
*args
|
Any
|
Variable length argument list. |
()
|
**kwargs
|
Any
|
Arbitrary keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
Loss if x is a dict (training), or network predictions (inference). |
Source code in ultralytics/nn/tasks.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
fuse
fuse(verbose=True)
Fuse the Conv2d()
and BatchNorm2d()
layers of the model into a single layer for improved computation
efficiency.
Returns:
Type | Description |
---|---|
Module
|
The fused model is returned. |
Source code in ultralytics/nn/tasks.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
info
info(detailed=False, verbose=True, imgsz=640)
Print model information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detailed
|
bool
|
If True, prints out detailed information about the model. |
False
|
verbose
|
bool
|
If True, prints out the model information. |
True
|
imgsz
|
int
|
The size of the image that the model will be trained on. |
640
|
Source code in ultralytics/nn/tasks.py
268 269 270 271 272 273 274 275 276 277 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the BaseModel.
Source code in ultralytics/nn/tasks.py
339 340 341 |
|
is_fused
is_fused(thresh=10)
Check if the model has less than a certain threshold of BatchNorm layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thresh
|
int
|
The threshold number of BatchNorm layers. |
10
|
Returns:
Type | Description |
---|---|
bool
|
True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. |
Source code in ultralytics/nn/tasks.py
255 256 257 258 259 260 261 262 263 264 265 266 |
|
load
load(weights, verbose=True)
Load weights into the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights
|
dict | Module
|
The pre-trained weights to be loaded. |
required |
verbose
|
bool
|
Whether to log the transfer progress. |
True
|
Source code in ultralytics/nn/tasks.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
predict
predict(x, profile=False, visualize=False, augment=False, embed=None)
Perform a forward pass through the network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor to the model. |
required |
profile
|
bool
|
Print the computation time of each layer if True. |
False
|
visualize
|
bool
|
Save the feature maps of the model if True. |
False
|
augment
|
bool
|
Augment image during prediction. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The last output of the model. |
Source code in ultralytics/nn/tasks.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
ultralytics.nn.tasks.DetectionModel
DetectionModel(cfg='yolo11n.yaml', ch=3, nc=None, verbose=True)
Bases: BaseModel
YOLO detection model.
This class implements the YOLO detection architecture, handling model initialization, forward pass, augmented inference, and loss computation for object detection tasks.
Attributes:
Name | Type | Description |
---|---|---|
yaml |
dict
|
Model configuration dictionary. |
model |
Sequential
|
The neural network model. |
save |
list
|
List of layer indices to save outputs from. |
names |
dict
|
Class names dictionary. |
inplace |
bool
|
Whether to use inplace operations. |
end2end |
bool
|
Whether the model uses end-to-end detection. |
stride |
Tensor
|
Model stride values. |
Methods:
Name | Description |
---|---|
_predict_augment |
Perform augmented inference. |
_descale_pred |
De-scale predictions following augmented inference. |
_clip_augmented |
Clip YOLO augmented inference tails. |
init_criterion |
Initialize the loss criterion. |
Examples:
Initialize a detection model
>>> model = DetectionModel("yolo11n.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the DetectionModel.
Source code in ultralytics/nn/tasks.py
496 497 498 |
|
ultralytics.nn.tasks.OBBModel
OBBModel(cfg='yolo11n-obb.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLO Oriented Bounding Box (OBB) model.
This class extends DetectionModel to handle oriented bounding box detection tasks, providing specialized loss computation for rotated object detection.
Methods:
Name | Description |
---|---|
init_criterion |
Initialize the loss criterion for OBB detection. |
Examples:
Initialize an OBB model
>>> model = OBBModel("yolo11n-obb.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-obb.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
518 519 520 521 522 523 524 525 526 527 528 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the model.
Source code in ultralytics/nn/tasks.py
530 531 532 |
|
ultralytics.nn.tasks.SegmentationModel
SegmentationModel(cfg='yolo11n-seg.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLO segmentation model.
This class extends DetectionModel to handle instance segmentation tasks, providing specialized loss computation for pixel-level object detection and segmentation.
Methods:
Name | Description |
---|---|
init_criterion |
Initialize the loss criterion for segmentation. |
Examples:
Initialize a segmentation model
>>> model = SegmentationModel("yolo11n-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-seg.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
552 553 554 555 556 557 558 559 560 561 562 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the SegmentationModel.
Source code in ultralytics/nn/tasks.py
564 565 566 |
|
ultralytics.nn.tasks.PoseModel
PoseModel(
cfg="yolo11n-pose.yaml",
ch=3,
nc=None,
data_kpt_shape=(None, None),
verbose=True,
)
Bases: DetectionModel
YOLO pose model.
This class extends DetectionModel to handle human pose estimation tasks, providing specialized loss computation for keypoint detection and pose estimation.
Attributes:
Name | Type | Description |
---|---|---|
kpt_shape |
tuple
|
Shape of keypoints data (num_keypoints, num_dimensions). |
Methods:
Name | Description |
---|---|
init_criterion |
Initialize the loss criterion for pose estimation. |
Examples:
Initialize a pose model
>>> model = PoseModel("yolo11n-pose.yaml", ch=3, nc=1, data_kpt_shape=(17, 3))
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-pose.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
data_kpt_shape
|
tuple
|
Shape of keypoints data. |
(None, None)
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the PoseModel.
Source code in ultralytics/nn/tasks.py
607 608 609 |
|
ultralytics.nn.tasks.ClassificationModel
ClassificationModel(cfg='yolo11n-cls.yaml', ch=3, nc=None, verbose=True)
Bases: BaseModel
YOLO classification model.
This class implements the YOLO classification architecture for image classification tasks, providing model initialization, configuration, and output reshaping capabilities.
Attributes:
Name | Type | Description |
---|---|---|
yaml |
dict
|
Model configuration dictionary. |
model |
Sequential
|
The neural network model. |
stride |
Tensor
|
Model stride values. |
names |
dict
|
Class names dictionary. |
Methods:
Name | Description |
---|---|
_from_yaml |
Set model configurations and define architecture. |
reshape_outputs |
Update model to specified class count. |
init_criterion |
Initialize the loss criterion. |
Examples:
Initialize a classification model
>>> model = ClassificationModel("yolo11n-cls.yaml", ch=3, nc=1000)
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-cls.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
637 638 639 640 641 642 643 644 645 646 647 648 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the ClassificationModel.
Source code in ultralytics/nn/tasks.py
703 704 705 |
|
reshape_outputs
staticmethod
reshape_outputs(model, nc)
Update a TorchVision classification model to class count 'n' if required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
Model to update. |
required |
nc
|
int
|
New number of classes. |
required |
Source code in ultralytics/nn/tasks.py
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
|
ultralytics.nn.tasks.RTDETRDetectionModel
RTDETRDetectionModel(cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both the training and inference processes. RTDETR is an object detection and tracking model that extends from the DetectionModel base class.
Attributes:
Name | Type | Description |
---|---|---|
nc |
int
|
Number of classes for detection. |
criterion |
RTDETRDetectionLoss
|
Loss function for training. |
Methods:
Name | Description |
---|---|
init_criterion |
Initialize the loss criterion. |
loss |
Compute loss for training. |
predict |
Perform forward pass through the model. |
Examples:
Initialize an RTDETR model
>>> model = RTDETRDetectionModel("rtdetr-l.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Configuration file name or path. |
'rtdetr-l.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Print additional information during initialization. |
True
|
Source code in ultralytics/nn/tasks.py
732 733 734 735 736 737 738 739 740 741 742 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the RTDETRDetectionModel.
Source code in ultralytics/nn/tasks.py
744 745 746 747 748 |
|
loss
loss(batch, preds=None)
Compute the loss for the given batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Dictionary containing image and label data. |
required |
preds
|
Tensor
|
Precomputed model predictions. |
None
|
Returns:
Name | Type | Description |
---|---|---|
loss_sum |
Tensor
|
Total loss value. |
loss_items |
Tensor
|
Main three losses in a tensor. |
Source code in ultralytics/nn/tasks.py
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
|
predict
predict(
x, profile=False, visualize=False, batch=None, augment=False, embed=None
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
batch
|
dict
|
Ground truth data for evaluation. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
|
ultralytics.nn.tasks.WorldModel
WorldModel(cfg='yolov8s-world.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLOv8 World Model.
This class implements the YOLOv8 World model for open-vocabulary object detection, supporting text-based class specification and CLIP model integration for zero-shot detection capabilities.
Attributes:
Name | Type | Description |
---|---|---|
txt_feats |
Tensor
|
Text feature embeddings for classes. |
clip_model |
Module
|
CLIP model for text encoding. |
Methods:
Name | Description |
---|---|
set_classes |
Set classes for offline inference. |
get_text_pe |
Get text positional embeddings. |
predict |
Perform forward pass with text features. |
loss |
Compute loss with text features. |
Examples:
Initialize a world model
>>> model = WorldModel("yolov8s-world.yaml", ch=3, nc=80)
>>> model.set_classes(["person", "car", "bicycle"])
>>> results = model.predict(image_tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolov8s-world.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
857 858 859 860 861 862 863 864 865 866 867 868 869 |
|
get_text_pe
get_text_pe(text, batch=80, cache_clip_model=True)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
List[str]
|
List of class names. |
required |
batch
|
int
|
Batch size for processing text tokens. |
80
|
cache_clip_model
|
bool
|
Whether to cache the CLIP model. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
Text positional embeddings. |
Source code in ultralytics/nn/tasks.py
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
|
predict
predict(
x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
txt_feats
|
Tensor
|
The text features, use it if it's given. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
|
set_classes
set_classes(text, batch=80, cache_clip_model=True)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
List[str]
|
List of class names. |
required |
batch
|
int
|
Batch size for processing text tokens. |
80
|
cache_clip_model
|
bool
|
Whether to cache the CLIP model. |
True
|
Source code in ultralytics/nn/tasks.py
871 872 873 874 875 876 877 878 879 880 881 |
|
ultralytics.nn.tasks.YOLOEModel
YOLOEModel(cfg='yoloe-v8s.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLOE detection model.
This class implements the YOLOE architecture for efficient object detection with text and visual prompts, supporting both prompt-based and prompt-free inference modes.
Attributes:
Name | Type | Description |
---|---|---|
pe |
Tensor
|
Prompt embeddings for classes. |
clip_model |
Module
|
CLIP model for text encoding. |
Methods:
Name | Description |
---|---|
get_text_pe |
Get text positional embeddings. |
get_visual_pe |
Get visual embeddings. |
set_vocab |
Set vocabulary for prompt-free model. |
get_vocab |
Get fused vocabulary layer. |
set_classes |
Set classes for offline inference. |
get_cls_pe |
Get class positional embeddings. |
predict |
Perform forward pass with prompts. |
loss |
Compute loss with prompts. |
Examples:
Initialize a YOLOE model
>>> model = YOLOEModel("yoloe-v8s.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yoloe-v8s.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
|
get_cls_pe
get_cls_pe(tpe, vpe)
Get class positional embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tpe
|
Tensor
|
Text positional embeddings. |
required |
vpe
|
Tensor
|
Visual positional embeddings. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Class positional embeddings. |
Source code in ultralytics/nn/tasks.py
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
|
get_text_pe
get_text_pe(text, batch=80, cache_clip_model=False, without_reprta=False)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
List[str]
|
List of class names. |
required |
batch
|
int
|
Batch size for processing text tokens. |
80
|
cache_clip_model
|
bool
|
Whether to cache the CLIP model. |
False
|
without_reprta
|
bool
|
Whether to return text embeddings cooperated with reprta module. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Text positional embeddings. |
Source code in ultralytics/nn/tasks.py
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
|
get_visual_pe
get_visual_pe(img, visual)
Get visual embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
Tensor
|
Input image tensor. |
required |
visual
|
Tensor
|
Visual features. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Visual positional embeddings. |
Source code in ultralytics/nn/tasks.py
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 |
|
get_vocab
get_vocab(names)
Get fused vocabulary layer from the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
list
|
List of class names. |
required |
Returns:
Type | Description |
---|---|
ModuleList
|
List of vocabulary modules. |
Source code in ultralytics/nn/tasks.py
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
|
predict
predict(
x,
profile=False,
visualize=False,
tpe=None,
augment=False,
embed=None,
vpe=None,
return_vpe=False,
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
tpe
|
Tensor
|
Text positional embeddings. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
vpe
|
Tensor
|
Visual positional embeddings. |
None
|
return_vpe
|
bool
|
If True, return visual positional embeddings. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 |
|
set_classes
set_classes(names, embeddings)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
List[str]
|
List of class names. |
required |
embeddings
|
Tensor
|
Embeddings tensor. |
required |
Source code in ultralytics/nn/tasks.py
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 |
|
set_vocab
set_vocab(vocab, names)
Set vocabulary for the prompt-free model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
ModuleList
|
List of vocabulary items. |
required |
names
|
List[str]
|
List of class names. |
required |
Source code in ultralytics/nn/tasks.py
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
|
ultralytics.nn.tasks.YOLOESegModel
YOLOESegModel(cfg='yoloe-v8s-seg.yaml', ch=3, nc=None, verbose=True)
Bases: YOLOEModel
, SegmentationModel
YOLOE segmentation model.
This class extends YOLOEModel to handle instance segmentation tasks with text and visual prompts, providing specialized loss computation for pixel-level object detection and segmentation.
Methods:
Name | Description |
---|---|
loss |
Compute loss with prompts for segmentation. |
Examples:
Initialize a YOLOE segmentation model
>>> model = YOLOESegModel("yoloe-v8s-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yoloe-v8s-seg.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 |
|
ultralytics.nn.tasks.Ensemble
Ensemble()
Bases: ModuleList
Ensemble of models.
This class allows combining multiple YOLO models into an ensemble for improved performance through model averaging or other ensemble techniques.
Methods:
Name | Description |
---|---|
forward |
Generate predictions from all models in the ensemble. |
Examples:
Create an ensemble of models
>>> ensemble = Ensemble()
>>> ensemble.append(model1)
>>> ensemble.append(model2)
>>> results = ensemble(image_tensor)
Source code in ultralytics/nn/tasks.py
1286 1287 1288 |
|
forward
forward(x, augment=False, profile=False, visualize=False)
Generate the YOLO network's final layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
augment
|
bool
|
Whether to augment the input. |
False
|
profile
|
bool
|
Whether to profile the model. |
False
|
visualize
|
bool
|
Whether to visualize the features. |
False
|
Returns:
Name | Type | Description |
---|---|---|
y |
Tensor
|
Concatenated predictions from all models. |
train_out |
None
|
Always None for ensemble inference. |
Source code in ultralytics/nn/tasks.py
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
|
ultralytics.nn.tasks.SafeClass
SafeClass(*args, **kwargs)
A placeholder class to replace unknown classes during unpickling.
Source code in ultralytics/nn/tasks.py
1366 1367 1368 |
|
__call__
__call__(*args, **kwargs)
Run SafeClass instance, ignoring all arguments.
Source code in ultralytics/nn/tasks.py
1370 1371 1372 |
|
ultralytics.nn.tasks.SafeUnpickler
Bases: Unpickler
Custom Unpickler that replaces unknown classes with SafeClass.
find_class
find_class(module, name)
Attempt to find a class, returning SafeClass if not among safe modules.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
module
|
str
|
Module name. |
required |
name
|
str
|
Class name. |
required |
Returns:
Type | Description |
---|---|
type
|
Found class or SafeClass. |
Source code in ultralytics/nn/tasks.py
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 |
|
ultralytics.nn.tasks.temporary_modules
temporary_modules(modules=None, attributes=None)
Context manager for temporarily adding or modifying modules in Python's module cache (sys.modules
).
This function can be used to change the module paths during runtime. It's useful when refactoring code, where you've moved a module from one ___location to another, but you still want to support the old import paths for backwards compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
modules
|
dict
|
A dictionary mapping old module paths to new module paths. |
None
|
attributes
|
dict
|
A dictionary mapping old module attributes to new module attributes. |
None
|
Examples:
>>> with temporary_modules({"old.module": "new.module"}, {"old.module.attribute": "new.module.attribute"}):
>>> import old.module # this will now import new.module
>>> from old.module import attribute # this will now import new.module.attribute
Note
The changes are only in effect inside the context manager and are undone once the context manager exits.
Be aware that directly manipulating sys.modules
can lead to unpredictable results, especially in larger
applications or libraries. Use this function with caution.
Source code in ultralytics/nn/tasks.py
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 |
|
ultralytics.nn.tasks.torch_safe_load
torch_safe_load(weight, safe_only=False)
Attempt to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
str
|
The file path of the PyTorch model. |
required |
safe_only
|
bool
|
If True, replace unknown classes with SafeClass during loading. |
False
|
Returns:
Name | Type | Description |
---|---|---|
ckpt |
dict
|
The loaded model checkpoint. |
file |
str
|
The loaded filename. |
Examples:
>>> from ultralytics.nn.tasks import torch_safe_load
>>> ckpt, file = torch_safe_load("path/to/best.pt", safe_only=True)
Source code in ultralytics/nn/tasks.py
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 |
|
ultralytics.nn.tasks.attempt_load_weights
attempt_load_weights(weights, device=None, inplace=True, fuse=False)
Load an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights
|
str | List[str]
|
Model weights path(s). |
required |
device
|
device
|
Device to load model to. |
None
|
inplace
|
bool
|
Whether to do inplace operations. |
True
|
fuse
|
bool
|
Whether to fuse model. |
False
|
Returns:
Type | Description |
---|---|
Module
|
Loaded model. |
Source code in ultralytics/nn/tasks.py
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 |
|
ultralytics.nn.tasks.attempt_load_one_weight
attempt_load_one_weight(weight, device=None, inplace=True, fuse=False)
Load a single model weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
str
|
Model weight path. |
required |
device
|
device
|
Device to load model to. |
None
|
inplace
|
bool
|
Whether to do inplace operations. |
True
|
fuse
|
bool
|
Whether to fuse model. |
False
|
Returns:
Name | Type | Description |
---|---|---|
model |
Module
|
Loaded model. |
ckpt |
dict
|
Model checkpoint dictionary. |
Source code in ultralytics/nn/tasks.py
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 |
|
ultralytics.nn.tasks.parse_model
parse_model(d, ch, verbose=True)
Parse a YOLO model.yaml dictionary into a PyTorch model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
dict
|
Model dictionary. |
required |
ch
|
int
|
Input channels. |
required |
verbose
|
bool
|
Whether to print model details. |
True
|
Returns:
Name | Type | Description |
---|---|---|
model |
Sequential
|
PyTorch model. |
save |
list
|
Sorted list of output layers. |
Source code in ultralytics/nn/tasks.py
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 |
|
ultralytics.nn.tasks.yaml_model_load
yaml_model_load(path)
Load a YOLOv8 model from a YAML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str | Path
|
Path to the YAML file. |
required |
Returns:
Type | Description |
---|---|
dict
|
Model dictionary. |
Source code in ultralytics/nn/tasks.py
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 |
|
ultralytics.nn.tasks.guess_model_scale
guess_model_scale(model_path)
Extract the size character n, s, m, l, or x of the model's scale from the model path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_path
|
str | Path
|
The path to the YOLO model's YAML file. |
required |
Returns:
Type | Description |
---|---|
str
|
The size character of the model's scale (n, s, m, l, or x). |
Source code in ultralytics/nn/tasks.py
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 |
|
ultralytics.nn.tasks.guess_model_task
guess_model_task(model)
Guess the task of a PyTorch model from its architecture or configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | dict
|
PyTorch model or model configuration in YAML format. |
required |
Returns:
Type | Description |
---|---|
str
|
Task of the model ('detect', 'segment', 'classify', 'pose', 'obb'). |
Source code in ultralytics/nn/tasks.py
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 |
|