Reference for ultralytics/models/yolo/detect/val.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/val.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.yolo.detect.val.DetectionValidator
DetectionValidator(dataloader=None, save_dir=None, args=None, _callbacks=None)
Bases: BaseValidator
A class extending the BaseValidator class for validation based on a detection model.
This class implements validation functionality specific to object detection tasks, including metrics calculation, prediction processing, and visualization of results.
Attributes:
Name | Type | Description |
---|---|---|
is_coco |
bool
|
Whether the dataset is COCO. |
is_lvis |
bool
|
Whether the dataset is LVIS. |
class_map |
List[int]
|
Mapping from model class indices to dataset class indices. |
metrics |
DetMetrics
|
Object detection metrics calculator. |
iouv |
Tensor
|
IoU thresholds for mAP calculation. |
niou |
int
|
Number of IoU thresholds. |
lb |
List[Any]
|
List for storing ground truth labels for hybrid saving. |
jdict |
List[Dict[str, Any]]
|
List for storing JSON detection results. |
stats |
Dict[str, List[Tensor]]
|
Dictionary for storing statistics during validation. |
Examples:
>>> from ultralytics.models.yolo.detect import DetectionValidator
>>> args = dict(model="yolo11n.pt", data="coco8.yaml")
>>> validator = DetectionValidator(args=args)
>>> validator()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataloader
|
DataLoader
|
Dataloader to use for validation. |
None
|
save_dir
|
Path
|
Directory to save results. |
None
|
args
|
Dict[str, Any]
|
Arguments for the validator. |
None
|
_callbacks
|
List[Any]
|
List of callback functions. |
None
|
Source code in ultralytics/models/yolo/detect/val.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
build_dataset
build_dataset(
img_path: str, mode: str = "val", batch: Optional[int] = None
) -> torch.utils.data.Dataset
Build YOLO Dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_path
|
str
|
Path to the folder containing images. |
required |
mode
|
str
|
|
'val'
|
batch
|
int
|
Size of batches, this is for |
None
|
Returns:
Type | Description |
---|---|
Dataset
|
YOLO dataset. |
Source code in ultralytics/models/yolo/detect/val.py
271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
coco_evaluate
coco_evaluate(
stats: Dict[str, Any],
pred_json: str,
anno_json: str,
iou_types: Union[str, List[str]] = "bbox",
suffix: Union[str, List[str]] = "Box",
) -> Dict[str, Any]
Evaluate COCO/LVIS metrics using faster-coco-eval library.
Performs evaluation using the faster-coco-eval library to compute mAP metrics for object detection. Updates the provided stats dictionary with computed metrics including mAP50, mAP50-95, and LVIS-specific metrics if applicable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats
|
Dict[str, Any]
|
Dictionary to store computed metrics and statistics. |
required |
pred_json
|
str | Path]
|
Path to JSON file containing predictions in COCO format. |
required |
anno_json
|
str | Path]
|
Path to JSON file containing ground truth annotations in COCO format. |
required |
iou_types
|
str | List[str]]
|
IoU type(s) for evaluation. Can be single string or list of strings. Common values include "bbox", "segm", "keypoints". Defaults to "bbox". |
'bbox'
|
suffix
|
str | List[str]]
|
Suffix to append to metric names in stats dictionary. Should correspond to iou_types if multiple types provided. Defaults to "Box". |
'Box'
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Updated stats dictionary containing the computed COCO/LVIS evaluation metrics. |
Source code in ultralytics/models/yolo/detect/val.py
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
|
eval_json
eval_json(stats: Dict[str, Any]) -> Dict[str, Any]
Evaluate YOLO output in JSON format and return performance statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats
|
Dict[str, Any]
|
Current statistics dictionary. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Updated statistics dictionary with COCO/LVIS evaluation results. |
Source code in ultralytics/models/yolo/detect/val.py
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
finalize_metrics
finalize_metrics() -> None
Set final values for metrics speed and confusion matrix.
Source code in ultralytics/models/yolo/detect/val.py
215 216 217 218 219 220 221 222 |
|
get_dataloader
get_dataloader(
dataset_path: str, batch_size: int
) -> torch.utils.data.DataLoader
Construct and return dataloader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path
|
str
|
Path to the dataset. |
required |
batch_size
|
int
|
Size of each batch. |
required |
Returns:
Type | Description |
---|---|
DataLoader
|
Dataloader for validation. |
Source code in ultralytics/models/yolo/detect/val.py
285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
get_desc
get_desc() -> str
Return a formatted string summarizing class metrics of YOLO model.
Source code in ultralytics/models/yolo/detect/val.py
103 104 105 |
|
get_stats
get_stats() -> Dict[str, Any]
Calculate and return metrics statistics.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary containing metrics results. |
Source code in ultralytics/models/yolo/detect/val.py
224 225 226 227 228 229 230 231 232 233 |
|
init_metrics
init_metrics(model: Module) -> None
Initialize evaluation metrics for YOLO detection validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
Model to validate. |
required |
Source code in ultralytics/models/yolo/detect/val.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
|
plot_predictions
plot_predictions(
batch: Dict[str, Any],
preds: List[Dict[str, Tensor]],
ni: int,
max_det: Optional[int] = None,
) -> None
Plot predicted bounding boxes on input images and save the result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Any]
|
Batch containing images and annotations. |
required |
preds
|
List[Dict[str, Tensor]]
|
List of predictions from the model. |
required |
ni
|
int
|
Batch index. |
required |
max_det
|
Optional[int]
|
Maximum number of detections to plot. |
None
|
Source code in ultralytics/models/yolo/detect/val.py
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
plot_val_samples
plot_val_samples(batch: Dict[str, Any], ni: int) -> None
Plot validation image samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Any]
|
Batch containing images and annotations. |
required |
ni
|
int
|
Batch index. |
required |
Source code in ultralytics/models/yolo/detect/val.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
postprocess
postprocess(preds: Tensor) -> List[Dict[str, torch.Tensor]]
Apply Non-maximum suppression to prediction outputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
Tensor
|
Raw predictions from the model. |
required |
Returns:
Type | Description |
---|---|
List[Dict[str, Tensor]]
|
Processed predictions after NMS, where each dict contains 'bboxes', 'conf', 'cls', and 'extra' tensors. |
Source code in ultralytics/models/yolo/detect/val.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
pred_to_json
pred_to_json(predn: Dict[str, Tensor], filename: str) -> None
Serialize YOLO predictions to COCO json format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predn
|
Dict[str, Tensor]
|
Predictions dictionary containing 'bboxes', 'conf', and 'cls' keys with bounding box coordinates, confidence scores, and class predictions. |
required |
filename
|
str
|
Image filename. |
required |
Source code in ultralytics/models/yolo/detect/val.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
preprocess
preprocess(batch: Dict[str, Any]) -> Dict[str, Any]
Preprocess batch of images for YOLO validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Any]
|
Batch containing images and annotations. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Preprocessed batch. |
Source code in ultralytics/models/yolo/detect/val.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
print_results
print_results() -> None
Print training/validation set metrics per class.
Source code in ultralytics/models/yolo/detect/val.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
save_one_txt
save_one_txt(
predn: Dict[str, Tensor],
save_conf: bool,
shape: Tuple[int, int],
file: Path,
) -> None
Save YOLO detections to a txt file in normalized coordinates in a specific format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predn
|
Dict[str, Tensor]
|
Dictionary containing predictions with keys 'bboxes', 'conf', and 'cls'. |
required |
save_conf
|
bool
|
Whether to save confidence scores. |
required |
shape
|
Tuple[int, int]
|
Shape of the original image (height, width). |
required |
file
|
Path
|
File path to save the detections. |
required |
Source code in ultralytics/models/yolo/detect/val.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
update_metrics
update_metrics(preds: List[Dict[str, Tensor]], batch: Dict[str, Any]) -> None
Update metrics with new predictions and ground truth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
List[Dict[str, Tensor]]
|
List of predictions from the model. |
required |
batch
|
Dict[str, Any]
|
Batch data containing ground truth. |
required |
Source code in ultralytics/models/yolo/detect/val.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|