Reference for ultralytics/models/utils/ops.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/utils/ops.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.utils.ops.HungarianMatcher
HungarianMatcher(
cost_gain: Optional[Dict[str, float]] = None,
use_fl: bool = True,
with_mask: bool = False,
num_sample_points: int = 12544,
alpha: float = 0.25,
gamma: float = 2.0,
)
Bases: Module
A module implementing the HungarianMatcher for optimal assignment between predictions and ground truth.
HungarianMatcher performs optimal bipartite assignment over predicted and ground truth bounding boxes using a cost function that considers classification scores, bounding box coordinates, and optionally mask predictions. This is used in end-to-end object detection models like DETR.
Attributes:
Name | Type | Description |
---|---|---|
cost_gain |
Dict[str, float]
|
Dictionary of cost coefficients for 'class', 'bbox', 'giou', 'mask', and 'dice' components. |
use_fl |
bool
|
Whether to use Focal Loss for classification cost calculation. |
with_mask |
bool
|
Whether the model makes mask predictions. |
num_sample_points |
int
|
Number of sample points used in mask cost calculation. |
alpha |
float
|
Alpha factor in Focal Loss calculation. |
gamma |
float
|
Gamma factor in Focal Loss calculation. |
Methods:
Name | Description |
---|---|
forward |
Compute optimal assignment between predictions and ground truths for a batch. |
_cost_mask |
Compute mask cost and dice cost if masks are predicted. |
Examples:
Initialize a HungarianMatcher with custom cost gains
>>> matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
Perform matching between predictions and ground truth
>>> pred_boxes = torch.rand(2, 100, 4) # batch_size=2, num_queries=100
>>> pred_scores = torch.rand(2, 100, 80) # 80 classes
>>> gt_boxes = torch.rand(10, 4) # 10 ground truth boxes
>>> gt_classes = torch.randint(0, 80, (10,))
>>> gt_groups = [5, 5] # 5 GT boxes per image
>>> indices = matcher(pred_boxes, pred_scores, gt_boxes, gt_classes, gt_groups)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cost_gain
|
Dict[str, float]
|
Dictionary of cost coefficients for different matching cost components. Should contain keys 'class', 'bbox', 'giou', 'mask', and 'dice'. |
None
|
use_fl
|
bool
|
Whether to use Focal Loss for classification cost calculation. |
True
|
with_mask
|
bool
|
Whether the model makes mask predictions. |
False
|
num_sample_points
|
int
|
Number of sample points used in mask cost calculation. |
12544
|
alpha
|
float
|
Alpha factor in Focal Loss calculation. |
0.25
|
gamma
|
float
|
Gamma factor in Focal Loss calculation. |
2.0
|
Source code in ultralytics/models/utils/ops.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
forward
forward(
pred_bboxes: Tensor,
pred_scores: Tensor,
gt_bboxes: Tensor,
gt_cls: Tensor,
gt_groups: List[int],
masks: Optional[Tensor] = None,
gt_mask: Optional[List[Tensor]] = None,
) -> List[Tuple[torch.Tensor, torch.Tensor]]
Compute optimal assignment between predictions and ground truth using Hungarian algorithm.
This method calculates matching costs based on classification scores, bounding box coordinates, and optionally mask predictions, then finds the optimal bipartite assignment between predictions and ground truth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_bboxes
|
Tensor
|
Predicted bounding boxes with shape (batch_size, num_queries, 4). |
required |
pred_scores
|
Tensor
|
Predicted classification scores with shape (batch_size, num_queries, num_classes). |
required |
gt_bboxes
|
Tensor
|
Ground truth bounding boxes with shape (num_gts, 4). |
required |
gt_cls
|
Tensor
|
Ground truth class labels with shape (num_gts,). |
required |
gt_groups
|
List[int]
|
Number of ground truth boxes for each image in the batch. |
required |
masks
|
Tensor
|
Predicted masks with shape (batch_size, num_queries, height, width). |
None
|
gt_mask
|
List[Tensor]
|
Ground truth masks, each with shape (num_masks, Height, Width). |
None
|
Returns:
Type | Description |
---|---|
List[Tuple[Tensor, Tensor]]
|
A list of size batch_size, each element is a tuple (index_i, index_j), where index_i is the tensor of indices of the selected predictions (in order) and index_j is the tensor of indices of the corresponding selected ground truth targets (in order). For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes). |
Source code in ultralytics/models/utils/ops.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
ultralytics.models.utils.ops.get_cdn_group
get_cdn_group(
batch: Dict[str, Any],
num_classes: int,
num_queries: int,
class_embed: Tensor,
num_dn: int = 100,
cls_noise_ratio: float = 0.5,
box_noise_scale: float = 1.0,
training: bool = False,
) -> Tuple[
Optional[torch.Tensor],
Optional[torch.Tensor],
Optional[torch.Tensor],
Optional[Dict[str, Any]],
]
Generate contrastive denoising training group with positive and negative samples from ground truths.
This function creates denoising queries for contrastive denoising training by adding noise to ground truth bounding boxes and class labels. It generates both positive and negative samples to improve model robustness.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Any]
|
Batch dictionary containing 'gt_cls' (torch.Tensor with shape (num_gts,)), 'gt_bboxes' (torch.Tensor with shape (num_gts, 4)), and 'gt_groups' (List[int]) indicating number of ground truths per image. |
required |
num_classes
|
int
|
Total number of object classes. |
required |
num_queries
|
int
|
Number of object queries. |
required |
class_embed
|
Tensor
|
Class embedding weights to map labels to embedding space. |
required |
num_dn
|
int
|
Number of denoising queries to generate. |
100
|
cls_noise_ratio
|
float
|
Noise ratio for class labels. |
0.5
|
box_noise_scale
|
float
|
Noise scale for bounding box coordinates. |
1.0
|
training
|
bool
|
Whether model is in training mode. |
False
|
Returns:
Name | Type | Description |
---|---|---|
padding_cls |
Tensor | None
|
Modified class embeddings for denoising with shape (bs, num_dn, embed_dim). |
padding_bbox |
Tensor | None
|
Modified bounding boxes for denoising with shape (bs, num_dn, 4). |
attn_mask |
Tensor | None
|
Attention mask for denoising with shape (tgt_size, tgt_size). |
dn_meta |
Dict[str, Any] | None
|
Meta information dictionary containing denoising parameters. |
Examples:
Generate denoising group for training
>>> batch = {
... "cls": torch.tensor([0, 1, 2]),
... "bboxes": torch.rand(3, 4),
... "batch_idx": torch.tensor([0, 0, 1]),
... "gt_groups": [2, 1],
... }
>>> class_embed = torch.rand(80, 256) # 80 classes, 256 embedding dim
>>> cdn_outputs = get_cdn_group(batch, 80, 100, class_embed, training=True)
Source code in ultralytics/models/utils/ops.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
|