Reference for ultralytics/models/sam/modules/tiny_encoder.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/tiny_encoder.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.models.sam.modules.tiny_encoder.Conv2d_BN
Conv2d_BN(
a: int,
b: int,
ks: int = 1,
stride: int = 1,
pad: int = 0,
dilation: int = 1,
groups: int = 1,
bn_weight_init: float = 1,
)
Bases: Sequential
A sequential container that performs 2D convolution followed by batch normalization.
This module combines a 2D convolution layer with batch normalization, providing a common building block for convolutional neural networks. The batch normalization weights and biases are initialized to specific values for optimal training performance.
Attributes:
Name | Type | Description |
---|---|---|
c |
Conv2d
|
2D convolution layer. |
bn |
BatchNorm2d
|
Batch normalization layer. |
Examples:
>>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1)
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output = conv_bn(input_tensor)
>>> print(output.shape)
torch.Size([1, 64, 224, 224])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
int
|
Number of input channels. |
required |
b
|
int
|
Number of output channels. |
required |
ks
|
int
|
Kernel size for the convolution. |
1
|
stride
|
int
|
Stride for the convolution. |
1
|
pad
|
int
|
Padding for the convolution. |
0
|
dilation
|
int
|
Dilation factor for the convolution. |
1
|
groups
|
int
|
Number of groups for the convolution. |
1
|
bn_weight_init
|
float
|
Initial value for batch normalization weight. |
1
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
ultralytics.models.sam.modules.tiny_encoder.PatchEmbed
PatchEmbed(in_chans: int, embed_dim: int, resolution: int, activation)
Bases: Module
Embed images into patches and project them into a specified embedding dimension.
This module converts input images into patch embeddings using a sequence of convolutional layers, effectively downsampling the spatial dimensions while increasing the channel dimension.
Attributes:
Name | Type | Description |
---|---|---|
patches_resolution |
Tuple[int, int]
|
Resolution of the patches after embedding. |
num_patches |
int
|
Total number of patches. |
in_chans |
int
|
Number of input channels. |
embed_dim |
int
|
Dimension of the embedding. |
seq |
Sequential
|
Sequence of convolutional and activation layers for patch embedding. |
Examples:
>>> import torch
>>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU)
>>> x = torch.randn(1, 3, 224, 224)
>>> output = patch_embed(x)
>>> print(output.shape)
torch.Size([1, 96, 56, 56])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_chans
|
int
|
Number of input channels. |
required |
embed_dim
|
int
|
Dimension of the embedding. |
required |
resolution
|
int
|
Input image resolution. |
required |
activation
|
Module
|
Activation function to use between convolutions. |
required |
Source code in ultralytics/models/sam/modules/tiny_encoder.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
forward
forward(x: Tensor) -> torch.Tensor
Process input tensor through patch embedding sequence, converting images to patch embeddings.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
121 122 123 |
|
ultralytics.models.sam.modules.tiny_encoder.MBConv
MBConv(
in_chans: int,
out_chans: int,
expand_ratio: float,
activation,
drop_path: float,
)
Bases: Module
Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture.
This module implements the mobile inverted bottleneck convolution with expansion, depthwise convolution, and projection phases, along with residual connections for improved gradient flow.
Attributes:
Name | Type | Description |
---|---|---|
in_chans |
int
|
Number of input channels. |
hidden_chans |
int
|
Number of hidden channels after expansion. |
out_chans |
int
|
Number of output channels. |
conv1 |
Conv2d_BN
|
First convolutional layer for channel expansion. |
act1 |
Module
|
First activation function. |
conv2 |
Conv2d_BN
|
Depthwise convolutional layer. |
act2 |
Module
|
Second activation function. |
conv3 |
Conv2d_BN
|
Final convolutional layer for projection. |
act3 |
Module
|
Third activation function. |
drop_path |
Module
|
Drop path layer (Identity for inference). |
Examples:
>>> in_chans, out_chans = 32, 64
>>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1)
>>> x = torch.randn(1, in_chans, 56, 56)
>>> output = mbconv(x)
>>> print(output.shape)
torch.Size([1, 64, 56, 56])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_chans
|
int
|
Number of input channels. |
required |
out_chans
|
int
|
Number of output channels. |
required |
expand_ratio
|
float
|
Channel expansion ratio for the hidden layer. |
required |
activation
|
Module
|
Activation function to use. |
required |
drop_path
|
float
|
Drop path rate for stochastic depth. |
required |
Source code in ultralytics/models/sam/modules/tiny_encoder.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
forward
forward(x: Tensor) -> torch.Tensor
Implement the forward pass of MBConv, applying convolutions and skip connection.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
183 184 185 186 187 188 189 190 191 192 193 |
|
ultralytics.models.sam.modules.tiny_encoder.PatchMerging
PatchMerging(
input_resolution: Tuple[int, int], dim: int, out_dim: int, activation
)
Bases: Module
Merge neighboring patches in the feature map and project to a new dimension.
This class implements a patch merging operation that combines spatial information and adjusts the feature dimension using a series of convolutional layers with batch normalization. It effectively reduces spatial resolution while potentially increasing channel dimensions.
Attributes:
Name | Type | Description |
---|---|---|
input_resolution |
Tuple[int, int]
|
The input resolution (height, width) of the feature map. |
dim |
int
|
The input dimension of the feature map. |
out_dim |
int
|
The output dimension after merging and projection. |
act |
Module
|
The activation function used between convolutions. |
conv1 |
Conv2d_BN
|
The first convolutional layer for dimension projection. |
conv2 |
Conv2d_BN
|
The second convolutional layer for spatial merging. |
conv3 |
Conv2d_BN
|
The third convolutional layer for final projection. |
Examples:
>>> input_resolution = (56, 56)
>>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU)
>>> x = torch.randn(4, 64, 56, 56)
>>> output = patch_merging(x)
>>> print(output.shape)
torch.Size([4, 3136, 128])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_resolution
|
Tuple[int, int]
|
The input resolution (height, width) of the feature map. |
required |
dim
|
int
|
The input dimension of the feature map. |
required |
out_dim
|
int
|
The output dimension after merging and projection. |
required |
activation
|
Module
|
The activation function used between convolutions. |
required |
Source code in ultralytics/models/sam/modules/tiny_encoder.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
forward
forward(x: Tensor) -> torch.Tensor
Apply patch merging and dimension projection to the input feature map.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
ultralytics.models.sam.modules.tiny_encoder.ConvLayer
ConvLayer(
dim: int,
input_resolution: Tuple[int, int],
depth: int,
activation,
drop_path: Union[float, List[float]] = 0.0,
downsample: Optional[Module] = None,
use_checkpoint: bool = False,
out_dim: Optional[int] = None,
conv_expand_ratio: float = 4.0,
)
Bases: Module
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
This layer optionally applies downsample operations to the output and supports gradient checkpointing for memory efficiency during training.
Attributes:
Name | Type | Description |
---|---|---|
dim |
int
|
Dimensionality of the input and output. |
input_resolution |
Tuple[int, int]
|
Resolution of the input image. |
depth |
int
|
Number of MBConv layers in the block. |
use_checkpoint |
bool
|
Whether to use gradient checkpointing to save memory. |
blocks |
ModuleList
|
List of MBConv layers. |
downsample |
Optional[Module]
|
Function for downsampling the output. |
Examples:
>>> input_tensor = torch.randn(1, 64, 56, 56)
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
>>> output = conv_layer(input_tensor)
>>> print(output.shape)
torch.Size([1, 3136, 128])
This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and optionally applies downsampling to the output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
The dimensionality of the input and output. |
required |
input_resolution
|
Tuple[int, int]
|
The resolution of the input image. |
required |
depth
|
int
|
The number of MBConv layers in the block. |
required |
activation
|
Module
|
Activation function applied after each convolution. |
required |
drop_path
|
float | List[float]
|
Drop path rate. Single float or a list of floats for each MBConv. |
0.0
|
downsample
|
Optional[Module]
|
Function for downsampling the output. None to skip downsampling. |
None
|
use_checkpoint
|
bool
|
Whether to use gradient checkpointing to save memory. |
False
|
out_dim
|
Optional[int]
|
The dimensionality of the output. None means it will be the same as |
None
|
conv_expand_ratio
|
float
|
Expansion ratio for the MBConv layers. |
4.0
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
forward
forward(x: Tensor) -> torch.Tensor
Process input through convolutional layers, applying MBConv blocks and optional downsampling.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
339 340 341 342 343 |
|
ultralytics.models.sam.modules.tiny_encoder.MLP
MLP(
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
activation=nn.GELU,
drop: float = 0.0,
)
Bases: Module
Multi-layer Perceptron (MLP) module for transformer architectures.
This module applies layer normalization, two fully-connected layers with an activation function in between, and dropout. It is commonly used in transformer-based architectures for processing token embeddings.
Attributes:
Name | Type | Description |
---|---|---|
norm |
LayerNorm
|
Layer normalization applied to the input. |
fc1 |
Linear
|
First fully-connected layer. |
fc2 |
Linear
|
Second fully-connected layer. |
act |
Module
|
Activation function applied after the first fully-connected layer. |
drop |
Dropout
|
Dropout layer applied after the activation function. |
Examples:
>>> import torch
>>> from torch import nn
>>> mlp = MLP(in_features=256, hidden_features=512, out_features=256, activation=nn.GELU, drop=0.1)
>>> x = torch.randn(32, 100, 256)
>>> output = mlp(x)
>>> print(output.shape)
torch.Size([32, 100, 256])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_features
|
int
|
Number of input features. |
required |
hidden_features
|
Optional[int]
|
Number of hidden features. |
None
|
out_features
|
Optional[int]
|
Number of output features. |
None
|
activation
|
Module
|
Activation function applied after the first fully-connected layer. |
GELU
|
drop
|
float
|
Dropout probability. |
0.0
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
forward
forward(x: Tensor) -> torch.Tensor
Apply MLP operations: layer norm, FC layers, activation, and dropout to the input tensor.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
397 398 399 400 401 402 403 404 |
|
ultralytics.models.sam.modules.tiny_encoder.Attention
Attention(
dim: int,
key_dim: int,
num_heads: int = 8,
attn_ratio: float = 4,
resolution: Tuple[int, int] = (14, 14),
)
Bases: Module
Multi-head attention module with spatial awareness and trainable attention biases.
This module implements a multi-head attention mechanism with support for spatial awareness, applying attention biases based on spatial resolution. It includes trainable attention biases for each unique offset between spatial positions in the resolution grid.
Attributes:
Name | Type | Description |
---|---|---|
num_heads |
int
|
Number of attention heads. |
scale |
float
|
Scaling factor for attention scores. |
key_dim |
int
|
Dimensionality of the keys and queries. |
nh_kd |
int
|
Product of num_heads and key_dim. |
d |
int
|
Dimensionality of the value vectors. |
dh |
int
|
Product of d and num_heads. |
attn_ratio |
float
|
Attention ratio affecting the dimensions of the value vectors. |
norm |
LayerNorm
|
Layer normalization applied to input. |
qkv |
Linear
|
Linear layer for computing query, key, and value projections. |
proj |
Linear
|
Linear layer for final projection. |
attention_biases |
Parameter
|
Learnable attention biases. |
attention_bias_idxs |
Tensor
|
Indices for attention biases. |
ab |
Tensor
|
Cached attention biases for inference, deleted during training. |
Examples:
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
>>> x = torch.randn(1, 196, 256)
>>> output = attn(x)
>>> print(output.shape)
torch.Size([1, 196, 256])
This module implements a multi-head attention mechanism with support for spatial awareness, applying attention biases based on spatial resolution. It includes trainable attention biases for each unique offset between spatial positions in the resolution grid.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
The dimensionality of the input and output. |
required |
key_dim
|
int
|
The dimensionality of the keys and queries. |
required |
num_heads
|
int
|
Number of attention heads. |
8
|
attn_ratio
|
float
|
Attention ratio, affecting the dimensions of the value vectors. |
4
|
resolution
|
Tuple[int, int]
|
Spatial resolution of the input feature map. |
(14, 14)
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
forward
forward(x: Tensor) -> torch.Tensor
Apply multi-head attention with spatial awareness and trainable attention biases.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
|
train
train(mode: bool = True)
Set the module in training mode and handle the 'ab' attribute for cached attention biases.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
489 490 491 492 493 494 495 496 |
|
ultralytics.models.sam.modules.tiny_encoder.TinyViTBlock
TinyViTBlock(
dim: int,
input_resolution: Tuple[int, int],
num_heads: int,
window_size: int = 7,
mlp_ratio: float = 4.0,
drop: float = 0.0,
drop_path: float = 0.0,
local_conv_size: int = 3,
activation=nn.GELU,
)
Bases: Module
TinyViT Block that applies self-attention and a local convolution to the input.
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with local convolutions to process input features efficiently. It supports windowed attention for computational efficiency and includes residual connections.
Attributes:
Name | Type | Description |
---|---|---|
dim |
int
|
The dimensionality of the input and output. |
input_resolution |
Tuple[int, int]
|
Spatial resolution of the input feature map. |
num_heads |
int
|
Number of attention heads. |
window_size |
int
|
Size of the attention window. |
mlp_ratio |
float
|
Ratio of MLP hidden dimension to embedding dimension. |
drop_path |
Module
|
Stochastic depth layer, identity function during inference. |
attn |
Attention
|
Self-attention module. |
mlp |
MLP
|
Multi-layer perceptron module. |
local_conv |
Conv2d_BN
|
Depth-wise local convolution layer. |
Examples:
>>> input_tensor = torch.randn(1, 196, 192)
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
>>> output = block(input_tensor)
>>> print(output.shape)
torch.Size([1, 196, 192])
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with local convolutions to process input features efficiently.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
Dimensionality of the input and output features. |
required |
input_resolution
|
Tuple[int, int]
|
Spatial resolution of the input feature map (height, width). |
required |
num_heads
|
int
|
Number of attention heads. |
required |
window_size
|
int
|
Size of the attention window. Must be greater than 0. |
7
|
mlp_ratio
|
float
|
Ratio of MLP hidden dimension to embedding dimension. |
4.0
|
drop
|
float
|
Dropout rate. |
0.0
|
drop_path
|
float
|
Stochastic depth rate. |
0.0
|
local_conv_size
|
int
|
Kernel size of the local convolution. |
3
|
activation
|
Module
|
Activation function for MLP. |
GELU
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
|
extra_repr
extra_repr() -> str
Return a string representation of the TinyViTBlock's parameters.
This method provides a formatted string containing key information about the TinyViTBlock, including its dimension, input resolution, number of attention heads, window size, and MLP ratio.
Returns:
Type | Description |
---|---|
str
|
A formatted string containing the block's parameters. |
Examples:
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0)
>>> print(block.extra_repr())
dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0
Source code in ultralytics/models/sam/modules/tiny_encoder.py
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
|
forward
forward(x: Tensor) -> torch.Tensor
Apply self-attention, local convolution, and MLP operations to the input tensor.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
|
ultralytics.models.sam.modules.tiny_encoder.BasicLayer
BasicLayer(
dim: int,
input_resolution: Tuple[int, int],
depth: int,
num_heads: int,
window_size: int,
mlp_ratio: float = 4.0,
drop: float = 0.0,
drop_path: Union[float, List[float]] = 0.0,
downsample: Optional[Module] = None,
use_checkpoint: bool = False,
local_conv_size: int = 3,
activation=nn.GELU,
out_dim: Optional[int] = None,
)
Bases: Module
A basic TinyViT layer for one stage in a TinyViT architecture.
This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks and an optional downsampling operation. It processes features at a specific resolution and dimensionality within the overall architecture.
Attributes:
Name | Type | Description |
---|---|---|
dim |
int
|
The dimensionality of the input and output features. |
input_resolution |
Tuple[int, int]
|
Spatial resolution of the input feature map. |
depth |
int
|
Number of TinyViT blocks in this layer. |
use_checkpoint |
bool
|
Whether to use gradient checkpointing to save memory. |
blocks |
ModuleList
|
List of TinyViT blocks that make up this layer. |
downsample |
Module | None
|
Downsample layer at the end of the layer, if specified. |
Examples:
>>> input_tensor = torch.randn(1, 3136, 192)
>>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
>>> output = layer(input_tensor)
>>> print(output.shape)
torch.Size([1, 784, 384])
This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to process feature maps at a specific resolution and dimensionality within the TinyViT model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
Dimensionality of the input and output features. |
required |
input_resolution
|
Tuple[int, int]
|
Spatial resolution of the input feature map (height, width). |
required |
depth
|
int
|
Number of TinyViT blocks in this layer. |
required |
num_heads
|
int
|
Number of attention heads in each TinyViT block. |
required |
window_size
|
int
|
Size of the local window for attention computation. |
required |
mlp_ratio
|
float
|
Ratio of MLP hidden dimension to embedding dimension. |
4.0
|
drop
|
float
|
Dropout rate. |
0.0
|
drop_path
|
float | List[float]
|
Stochastic depth rate. Can be a float or a list of floats for each block. |
0.0
|
downsample
|
Module | None
|
Downsampling layer at the end of the layer. None to skip downsampling. |
None
|
use_checkpoint
|
bool
|
Whether to use gradient checkpointing to save memory. |
False
|
local_conv_size
|
int
|
Kernel size for the local convolution in each TinyViT block. |
3
|
activation
|
Module
|
Activation function used in the MLP. |
GELU
|
out_dim
|
int | None
|
Output dimension after downsampling. None means it will be the same as |
None
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
|
extra_repr
extra_repr() -> str
Return a string with the layer's parameters for printing.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
764 765 766 |
|
forward
forward(x: Tensor) -> torch.Tensor
Process input through TinyViT blocks and optional downsampling.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
758 759 760 761 762 |
|
ultralytics.models.sam.modules.tiny_encoder.TinyViT
TinyViT(
img_size: int = 224,
in_chans: int = 3,
num_classes: int = 1000,
embed_dims: Tuple[int, int, int, int] = (96, 192, 384, 768),
depths: Tuple[int, int, int, int] = (2, 2, 6, 2),
num_heads: Tuple[int, int, int, int] = (3, 6, 12, 24),
window_sizes: Tuple[int, int, int, int] = (7, 7, 14, 7),
mlp_ratio: float = 4.0,
drop_rate: float = 0.0,
drop_path_rate: float = 0.1,
use_checkpoint: bool = False,
mbconv_expand_ratio: float = 4.0,
local_conv_size: int = 3,
layer_lr_decay: float = 1.0,
)
Bases: Module
TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction.
This class implements the TinyViT model, which combines elements of vision transformers and convolutional neural networks for improved efficiency and performance on vision tasks. It features hierarchical processing with patch embedding, multiple stages of attention and convolution blocks, and a feature refinement neck.
Attributes:
Name | Type | Description |
---|---|---|
img_size |
int
|
Input image size. |
num_classes |
int
|
Number of classification classes. |
depths |
Tuple[int, int, int, int]
|
Number of blocks in each stage. |
num_layers |
int
|
Total number of layers in the network. |
mlp_ratio |
float
|
Ratio of MLP hidden dimension to embedding dimension. |
patch_embed |
PatchEmbed
|
Module for patch embedding. |
patches_resolution |
Tuple[int, int]
|
Resolution of embedded patches. |
layers |
ModuleList
|
List of network layers. |
norm_head |
LayerNorm
|
Layer normalization for the classifier head. |
head |
Linear
|
Linear layer for final classification. |
neck |
Sequential
|
Neck module for feature refinement. |
Examples:
>>> model = TinyViT(img_size=224, num_classes=1000)
>>> x = torch.randn(1, 3, 224, 224)
>>> features = model.forward_features(x)
>>> print(features.shape)
torch.Size([1, 256, 56, 56])
This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of attention and convolution blocks, and a classification head.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_size
|
int
|
Size of the input image. |
224
|
in_chans
|
int
|
Number of input channels. |
3
|
num_classes
|
int
|
Number of classes for classification. |
1000
|
embed_dims
|
Tuple[int, int, int, int]
|
Embedding dimensions for each stage. |
(96, 192, 384, 768)
|
depths
|
Tuple[int, int, int, int]
|
Number of blocks in each stage. |
(2, 2, 6, 2)
|
num_heads
|
Tuple[int, int, int, int]
|
Number of attention heads in each stage. |
(3, 6, 12, 24)
|
window_sizes
|
Tuple[int, int, int, int]
|
Window sizes for each stage. |
(7, 7, 14, 7)
|
mlp_ratio
|
float
|
Ratio of MLP hidden dim to embedding dim. |
4.0
|
drop_rate
|
float
|
Dropout rate. |
0.0
|
drop_path_rate
|
float
|
Stochastic depth rate. |
0.1
|
use_checkpoint
|
bool
|
Whether to use checkpointing to save memory. |
False
|
mbconv_expand_ratio
|
float
|
Expansion ratio for MBConv layer. |
4.0
|
local_conv_size
|
int
|
Kernel size for local convolutions. |
3
|
layer_lr_decay
|
float
|
Layer-wise learning rate decay factor. |
1.0
|
Source code in ultralytics/models/sam/modules/tiny_encoder.py
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
forward
forward(x: Tensor) -> torch.Tensor
Perform the forward pass through the TinyViT model, extracting features from the input image.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
979 980 981 |
|
forward_features
forward_features(x: Tensor) -> torch.Tensor
Process input through feature extraction layers, returning spatial features.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
|
no_weight_decay_keywords
no_weight_decay_keywords()
Return a set of keywords for parameters that should not use weight decay.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
959 960 961 962 |
|
set_imgsz
set_imgsz(imgsz: List[int] = [1024, 1024])
Set image size to make model compatible with different image sizes.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
|
set_layer_lr_decay
set_layer_lr_decay(layer_lr_decay: float)
Set layer-wise learning rate decay for the TinyViT model based on depth.
Source code in ultralytics/models/sam/modules/tiny_encoder.py
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
|