Reference for ultralytics/data/loaders.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/loaders.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.data.loaders.SourceTypes
dataclass
SourceTypes(
stream: bool = False,
screenshot: bool = False,
from_img: bool = False,
tensor: bool = False,
)
Class to represent various types of input sources for predictions.
This class uses dataclass to define boolean flags for different types of input sources that can be used for making predictions with YOLO models.
Attributes:
Name | Type | Description |
---|---|---|
stream |
bool
|
Flag indicating if the input source is a video stream. |
screenshot |
bool
|
Flag indicating if the input source is a screenshot. |
from_img |
bool
|
Flag indicating if the input source is an image file. |
tensor |
bool
|
Flag indicating if the input source is a tensor. |
Examples:
>>> source_types = SourceTypes(stream=True, screenshot=False, from_img=False)
>>> print(source_types.stream)
True
>>> print(source_types.from_img)
False
ultralytics.data.loaders.LoadStreams
LoadStreams(
sources: str = "file.streams",
vid_stride: int = 1,
buffer: bool = False,
channels: int = 3,
)
Stream Loader for various types of video streams.
Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video streams simultaneously, making it suitable for real-time video analysis tasks.
Attributes:
Name | Type | Description |
---|---|---|
sources |
List[str]
|
The source input paths or URLs for the video streams. |
vid_stride |
int
|
Video frame-rate stride. |
buffer |
bool
|
Whether to buffer input streams. |
running |
bool
|
Flag to indicate if the streaming thread is running. |
mode |
str
|
Set to 'stream' indicating real-time capture. |
imgs |
List[List[ndarray]]
|
List of image frames for each stream. |
fps |
List[float]
|
List of FPS for each stream. |
frames |
List[int]
|
List of total frames for each stream. |
threads |
List[Thread]
|
List of threads for each stream. |
shape |
List[Tuple[int, int, int]]
|
List of shapes for each stream. |
caps |
List[VideoCapture]
|
List of cv2.VideoCapture objects for each stream. |
bs |
int
|
Batch size for processing. |
cv2_flag |
int
|
OpenCV flag for image reading (grayscale or RGB). |
Methods:
Name | Description |
---|---|
update |
Read stream frames in daemon thread. |
close |
Close stream loader and release resources. |
__iter__ |
Returns an iterator object for the class. |
__next__ |
Returns source paths, transformed, and original images for processing. |
__len__ |
Return the length of the sources object. |
Examples:
>>> stream_loader = LoadStreams("rtsp://example.com/stream1.mp4")
>>> for sources, imgs, _ in stream_loader:
... # Process the images
... pass
>>> stream_loader.close()
Notes
- The class uses threading to efficiently load frames from multiple streams simultaneously.
- It automatically handles YouTube links, converting them to the best available stream URL.
- The class implements a buffer system to manage frame storage and retrieval.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sources
|
str
|
Path to streams file or single stream URL. |
'file.streams'
|
vid_stride
|
int
|
Video frame-rate stride. |
1
|
buffer
|
bool
|
Whether to buffer input streams. |
False
|
channels
|
int
|
Number of image channels (1 for grayscale, 3 for RGB). |
3
|
Source code in ultralytics/data/loaders.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
__iter__
__iter__()
Iterate through YOLO image feed and re-open unresponsive streams.
Source code in ultralytics/data/loaders.py
191 192 193 194 |
|
__len__
__len__() -> int
Return the number of video streams in the LoadStreams object.
Source code in ultralytics/data/loaders.py
223 224 225 |
|
__next__
__next__() -> Tuple[List[str], List[np.ndarray], List[str]]
Return the next batch of frames from multiple video streams for processing.
Source code in ultralytics/data/loaders.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
close
close()
Terminate stream loader, stop threads, and release video capture resources.
Source code in ultralytics/data/loaders.py
178 179 180 181 182 183 184 185 186 187 188 189 |
|
update
update(i: int, cap: VideoCapture, stream: str)
Read stream frames in daemon thread and update image buffer.
Source code in ultralytics/data/loaders.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
ultralytics.data.loaders.LoadScreenshots
LoadScreenshots(source: str, channels: int = 3)
Ultralytics screenshot dataloader for capturing and processing screen images.
This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with
yolo predict source=screen
.
Attributes:
Name | Type | Description |
---|---|---|
source |
str
|
The source input indicating which screen to capture. |
screen |
int
|
The screen number to capture. |
left |
int
|
The left coordinate for screen capture area. |
top |
int
|
The top coordinate for screen capture area. |
width |
int
|
The width of the screen capture area. |
height |
int
|
The height of the screen capture area. |
mode |
str
|
Set to 'stream' indicating real-time capture. |
frame |
int
|
Counter for captured frames. |
sct |
mss
|
Screen capture object from |
bs |
int
|
Batch size, set to 1. |
fps |
int
|
Frames per second, set to 30. |
monitor |
Dict[str, int]
|
Monitor configuration details. |
cv2_flag |
int
|
OpenCV flag for image reading (grayscale or RGB). |
Methods:
Name | Description |
---|---|
__iter__ |
Returns an iterator object. |
__next__ |
Captures the next screenshot and returns it. |
Examples:
>>> loader = LoadScreenshots("0 100 100 640 480") # screen 0, top-left (100,100), 640x480
>>> for source, im, im0s, vid_cap, s in loader:
... print(f"Captured frame: {im.shape}")
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
str
|
Screen capture source string in format "screen_num left top width height". |
required |
channels
|
int
|
Number of image channels (1 for grayscale, 3 for RGB). |
3
|
Source code in ultralytics/data/loaders.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
__iter__
__iter__()
Yield the next screenshot image from the specified screen or region for processing.
Source code in ultralytics/data/loaders.py
294 295 296 |
|
__next__
__next__() -> Tuple[List[str], List[np.ndarray], List[str]]
Capture and return the next screenshot as a numpy array using the mss library.
Source code in ultralytics/data/loaders.py
298 299 300 301 302 303 304 305 |
|
ultralytics.data.loaders.LoadImagesAndVideos
LoadImagesAndVideos(
path: Union[str, Path, List],
batch: int = 1,
vid_stride: int = 1,
channels: int = 3,
)
A class for loading and processing images and videos for YOLO object detection.
This class manages the loading and pre-processing of image and video data from various sources, including single image files, video files, and lists of image and video paths.
Attributes:
Name | Type | Description |
---|---|---|
files |
List[str]
|
List of image and video file paths. |
nf |
int
|
Total number of files (images and videos). |
video_flag |
List[bool]
|
Flags indicating whether a file is a video (True) or an image (False). |
mode |
str
|
Current mode, 'image' or 'video'. |
vid_stride |
int
|
Stride for video frame-rate. |
bs |
int
|
Batch size. |
cap |
VideoCapture
|
Video capture object for OpenCV. |
frame |
int
|
Frame counter for video. |
frames |
int
|
Total number of frames in the video. |
count |
int
|
Counter for iteration, initialized at 0 during iter(). |
ni |
int
|
Number of images. |
cv2_flag |
int
|
OpenCV flag for image reading (grayscale or RGB). |
Methods:
Name | Description |
---|---|
__iter__ |
Returns an iterator object for VideoStream or ImageFolder. |
__next__ |
Returns the next batch of images or video frames along with their paths and metadata. |
_new_video |
Creates a new video capture object for the given path. |
__len__ |
Returns the number of batches in the object. |
Examples:
>>> loader = LoadImagesAndVideos("path/to/data", batch=32, vid_stride=1)
>>> for paths, imgs, info in loader:
... # Process batch of images or video frames
... pass
Notes
- Supports various image formats including HEIC.
- Handles both local files and directories.
- Can read from a text file containing paths to images and videos.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str | Path | List
|
Path to images/videos, directory, or list of paths. |
required |
batch
|
int
|
Batch size for processing. |
1
|
vid_stride
|
int
|
Video frame-rate stride. |
1
|
channels
|
int
|
Number of image channels (1 for grayscale, 3 for RGB). |
3
|
Source code in ultralytics/data/loaders.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
__iter__
__iter__()
Iterate through image/video files, yielding source paths, images, and metadata.
Source code in ultralytics/data/loaders.py
401 402 403 404 |
|
__len__
__len__() -> int
Return the number of files (images and videos) in the dataset.
Source code in ultralytics/data/loaders.py
485 486 487 |
|
__next__
__next__() -> Tuple[List[str], List[np.ndarray], List[str]]
Return the next batch of images or video frames with their paths and metadata.
Source code in ultralytics/data/loaders.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
|
ultralytics.data.loaders.LoadPilAndNumpy
LoadPilAndNumpy(im0: Union[Image, ndarray, List], channels: int = 3)
Load images from PIL and Numpy arrays for batch processing.
This class manages loading and pre-processing of image data from both PIL and Numpy formats. It performs basic validation and format conversion to ensure that the images are in the required format for downstream processing.
Attributes:
Name | Type | Description |
---|---|---|
paths |
List[str]
|
List of image paths or autogenerated filenames. |
im0 |
List[ndarray]
|
List of images stored as Numpy arrays. |
mode |
str
|
Type of data being processed, set to 'image'. |
bs |
int
|
Batch size, equivalent to the length of |
Methods:
Name | Description |
---|---|
_single_check |
Validate and format a single image to a Numpy array. |
Examples:
>>> from PIL import Image
>>> import numpy as np
>>> pil_img = Image.new("RGB", (100, 100))
>>> np_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> loader = LoadPilAndNumpy([pil_img, np_img])
>>> paths, images, _ = next(iter(loader))
>>> print(f"Loaded {len(images)} images")
Loaded 2 images
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im0
|
Image | ndarray | List
|
Single image or list of images in PIL or numpy format. |
required |
channels
|
int
|
Number of image channels (1 for grayscale, 3 for RGB). |
3
|
Source code in ultralytics/data/loaders.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
|
__iter__
__iter__()
Iterate through PIL/numpy images, yielding paths, raw images, and metadata for processing.
Source code in ultralytics/data/loaders.py
558 559 560 561 |
|
__len__
__len__() -> int
Return the length of the 'im0' attribute, representing the number of loaded images.
Source code in ultralytics/data/loaders.py
547 548 549 |
|
__next__
__next__() -> Tuple[List[str], List[np.ndarray], List[str]]
Return the next batch of images, paths, and metadata for processing.
Source code in ultralytics/data/loaders.py
551 552 553 554 555 556 |
|
ultralytics.data.loaders.LoadTensor
LoadTensor(im0: Tensor)
A class for loading and processing tensor data for object detection tasks.
This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for further processing in object detection pipelines.
Attributes:
Name | Type | Description |
---|---|---|
im0 |
Tensor
|
The input tensor containing the image(s) with shape (B, C, H, W). |
bs |
int
|
Batch size, inferred from the shape of |
mode |
str
|
Current processing mode, set to 'image'. |
paths |
List[str]
|
List of image paths or auto-generated filenames. |
Methods:
Name | Description |
---|---|
_single_check |
Validates and formats an input tensor. |
Examples:
>>> import torch
>>> tensor = torch.rand(1, 3, 640, 640)
>>> loader = LoadTensor(tensor)
>>> paths, images, info = next(iter(loader))
>>> print(f"Processed {len(images)} images")
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im0
|
Tensor
|
Input tensor with shape (B, C, H, W). |
required |
Source code in ultralytics/data/loaders.py
588 589 590 591 592 593 594 595 596 597 598 |
|
__iter__
__iter__()
Yield an iterator object for iterating through tensor image data.
Source code in ultralytics/data/loaders.py
622 623 624 625 |
|
__len__
__len__() -> int
Return the batch size of the tensor input.
Source code in ultralytics/data/loaders.py
634 635 636 |
|
__next__
__next__() -> Tuple[List[str], torch.Tensor, List[str]]
Yield the next batch of tensor images and metadata for processing.
Source code in ultralytics/data/loaders.py
627 628 629 630 631 632 |
|
ultralytics.data.loaders.autocast_list
autocast_list(source: List[Any]) -> List[Union[Image.Image, np.ndarray]]
Merge a list of sources into a list of numpy arrays or PIL images for Ultralytics prediction.
Source code in ultralytics/data/loaders.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
|
ultralytics.data.loaders.get_best_youtube_url
get_best_youtube_url(url: str, method: str = 'pytube') -> Optional[str]
Retrieve the URL of the best quality MP4 video stream from a given YouTube video.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url
|
str
|
The URL of the YouTube video. |
required |
method
|
str
|
The method to use for extracting video info. Options are "pytube", "pafy", and "yt-dlp". |
'pytube'
|
Returns:
Type | Description |
---|---|
str | None
|
The URL of the best quality MP4 video stream, or None if no suitable stream is found. |
Examples:
>>> url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
>>> best_url = get_best_youtube_url(url)
>>> print(best_url)
https://rr4---sn-q4flrnek.googlevideo.com/videoplayback?expire=...
Notes
- Requires additional libraries based on the chosen method: pytubefix, pafy, or yt-dlp.
- The function prioritizes streams with at least 1080p resolution when available.
- For the "yt-dlp" method, it looks for formats with video codec, no audio, and *.mp4 extension.
Source code in ultralytics/data/loaders.py
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
|