Skip to content

Reference for ultralytics/data/build.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/build.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.data.build.InfiniteDataLoader

InfiniteDataLoader(*args: Any, **kwargs: Any)

Bases: DataLoader

Dataloader that reuses workers for infinite iteration.

This dataloader extends the PyTorch DataLoader to provide infinite recycling of workers, which improves efficiency for training loops that need to iterate through the dataset multiple times without recreating workers.

Attributes:

Name Type Description
batch_sampler _RepeatSampler

A sampler that repeats indefinitely.

iterator Iterator

The iterator from the parent DataLoader.

Methods:

Name Description
__len__

Return the length of the batch sampler's sampler.

__iter__

Create a sampler that repeats indefinitely.

__del__

Ensure workers are properly terminated.

reset

Reset the iterator, useful when modifying dataset settings during training.

Examples:

Create an infinite dataloader for training

>>> dataset = YOLODataset(...)
>>> dataloader = InfiniteDataLoader(dataset, batch_size=16, shuffle=True)
>>> for batch in dataloader:  # Infinite iteration
>>>     train_step(batch)
Source code in ultralytics/data/build.py
54
55
56
57
58
def __init__(self, *args: Any, **kwargs: Any):
    """Initialize the InfiniteDataLoader with the same arguments as DataLoader."""
    super().__init__(*args, **kwargs)
    object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
    self.iterator = super().__iter__()

__del__

__del__()

Ensure that workers are properly terminated when the dataloader is deleted.

Source code in ultralytics/data/build.py
69
70
71
72
73
74
75
76
77
78
79
def __del__(self):
    """Ensure that workers are properly terminated when the dataloader is deleted."""
    try:
        if not hasattr(self.iterator, "_workers"):
            return
        for w in self.iterator._workers:  # force terminate
            if w.is_alive():
                w.terminate()
        self.iterator._shutdown_workers()  # cleanup
    except Exception:
        pass

__iter__

__iter__() -> Iterator

Create an iterator that yields indefinitely from the underlying iterator.

Source code in ultralytics/data/build.py
64
65
66
67
def __iter__(self) -> Iterator:
    """Create an iterator that yields indefinitely from the underlying iterator."""
    for _ in range(len(self)):
        yield next(self.iterator)

__len__

__len__() -> int

Return the length of the batch sampler's sampler.

Source code in ultralytics/data/build.py
60
61
62
def __len__(self) -> int:
    """Return the length of the batch sampler's sampler."""
    return len(self.batch_sampler.sampler)

reset

reset()

Reset the iterator to allow modifications to the dataset during training.

Source code in ultralytics/data/build.py
81
82
83
def reset(self):
    """Reset the iterator to allow modifications to the dataset during training."""
    self.iterator = self._get_iterator()





ultralytics.data.build._RepeatSampler

_RepeatSampler(sampler: Any)

Sampler that repeats forever for infinite iteration.

This sampler wraps another sampler and yields its contents indefinitely, allowing for infinite iteration over a dataset without recreating the sampler.

Attributes:

Name Type Description
sampler sampler

The sampler to repeat.

Source code in ultralytics/data/build.py
97
98
99
def __init__(self, sampler: Any):
    """Initialize the _RepeatSampler with a sampler to repeat indefinitely."""
    self.sampler = sampler

__iter__

__iter__() -> Iterator

Iterate over the sampler indefinitely, yielding its contents.

Source code in ultralytics/data/build.py
101
102
103
104
def __iter__(self) -> Iterator:
    """Iterate over the sampler indefinitely, yielding its contents."""
    while True:
        yield from iter(self.sampler)





ultralytics.data.build.seed_worker

seed_worker(worker_id: int)

Set dataloader worker seed for reproducibility across worker processes.

Source code in ultralytics/data/build.py
107
108
109
110
111
def seed_worker(worker_id: int):  # noqa
    """Set dataloader worker seed for reproducibility across worker processes."""
    worker_seed = torch.initial_seed() % 2**32
    np.random.seed(worker_seed)
    random.seed(worker_seed)





ultralytics.data.build.build_yolo_dataset

build_yolo_dataset(
    cfg,
    img_path,
    batch,
    data,
    mode="train",
    rect=False,
    stride=32,
    multi_modal=False,
)

Build and return a YOLO dataset based on configuration parameters.

Source code in ultralytics/data/build.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
    """Build and return a YOLO dataset based on configuration parameters."""
    dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
    return dataset(
        img_path=img_path,
        imgsz=cfg.imgsz,
        batch_size=batch,
        augment=mode == "train",  # augmentation
        hyp=cfg,  # TODO: probably add a get_hyps_from_cfg function
        rect=cfg.rect or rect,  # rectangular batches
        cache=cfg.cache or None,
        single_cls=cfg.single_cls or False,
        stride=int(stride),
        pad=0.0 if mode == "train" else 0.5,
        prefix=colorstr(f"{mode}: "),
        task=cfg.task,
        classes=cfg.classes,
        data=data,
        fraction=cfg.fraction if mode == "train" else 1.0,
    )





ultralytics.data.build.build_grounding

build_grounding(
    cfg, img_path, json_file, batch, mode="train", rect=False, stride=32
)

Build and return a GroundingDataset based on configuration parameters.

Source code in ultralytics/data/build.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
    """Build and return a GroundingDataset based on configuration parameters."""
    return GroundingDataset(
        img_path=img_path,
        json_file=json_file,
        imgsz=cfg.imgsz,
        batch_size=batch,
        augment=mode == "train",  # augmentation
        hyp=cfg,  # TODO: probably add a get_hyps_from_cfg function
        rect=cfg.rect or rect,  # rectangular batches
        cache=cfg.cache or None,
        single_cls=cfg.single_cls or False,
        stride=int(stride),
        pad=0.0 if mode == "train" else 0.5,
        prefix=colorstr(f"{mode}: "),
        task=cfg.task,
        classes=cfg.classes,
        fraction=cfg.fraction if mode == "train" else 1.0,
    )





ultralytics.data.build.build_dataloader

build_dataloader(
    dataset, batch: int, workers: int, shuffle: bool = True, rank: int = -1
)

Create and return an InfiniteDataLoader or DataLoader for training or validation.

Parameters:

Name Type Description Default
dataset Dataset

Dataset to load data from.

required
batch int

Batch size for the dataloader.

required
workers int

Number of worker threads for loading data.

required
shuffle bool

Whether to shuffle the dataset.

True
rank int

Process rank in distributed training. -1 for single-GPU training.

-1

Returns:

Type Description
InfiniteDataLoader

A dataloader that can be used for training or validation.

Examples:

Create a dataloader for training

>>> dataset = YOLODataset(...)
>>> dataloader = build_dataloader(dataset, batch=16, workers=4, shuffle=True)
Source code in ultralytics/data/build.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, rank: int = -1):
    """
    Create and return an InfiniteDataLoader or DataLoader for training or validation.

    Args:
        dataset (Dataset): Dataset to load data from.
        batch (int): Batch size for the dataloader.
        workers (int): Number of worker threads for loading data.
        shuffle (bool, optional): Whether to shuffle the dataset.
        rank (int, optional): Process rank in distributed training. -1 for single-GPU training.

    Returns:
        (InfiniteDataLoader): A dataloader that can be used for training or validation.

    Examples:
        Create a dataloader for training
        >>> dataset = YOLODataset(...)
        >>> dataloader = build_dataloader(dataset, batch=16, workers=4, shuffle=True)
    """
    batch = min(batch, len(dataset))
    nd = torch.cuda.device_count()  # number of CUDA devices
    nw = min(os.cpu_count() // max(nd, 1), workers)  # number of workers
    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
    generator = torch.Generator()
    generator.manual_seed(6148914691236517205 + RANK)
    return InfiniteDataLoader(
        dataset=dataset,
        batch_size=batch,
        shuffle=shuffle and sampler is None,
        num_workers=nw,
        sampler=sampler,
        pin_memory=PIN_MEMORY,
        collate_fn=getattr(dataset, "collate_fn", None),
        worker_init_fn=seed_worker,
        generator=generator,
    )





ultralytics.data.build.check_source

check_source(source)

Check the type of input source and return corresponding flag values.

Parameters:

Name Type Description Default
source str | int | Path | list | tuple | ndarray | Image | Tensor

The input source to check.

required

Returns:

Name Type Description
source str | int | Path | list | tuple | ndarray | Image | Tensor

The processed source.

webcam bool

Whether the source is a webcam.

screenshot bool

Whether the source is a screenshot.

from_img bool

Whether the source is an image or list of images.

in_memory bool

Whether the source is an in-memory object.

tensor bool

Whether the source is a torch.Tensor.

Examples:

Check a file path source

>>> source, webcam, screenshot, from_img, in_memory, tensor = check_source("image.jpg")

Check a webcam source

>>> source, webcam, screenshot, from_img, in_memory, tensor = check_source(0)
Source code in ultralytics/data/build.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def check_source(source):
    """
    Check the type of input source and return corresponding flag values.

    Args:
        source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The input source to check.

    Returns:
        source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The processed source.
        webcam (bool): Whether the source is a webcam.
        screenshot (bool): Whether the source is a screenshot.
        from_img (bool): Whether the source is an image or list of images.
        in_memory (bool): Whether the source is an in-memory object.
        tensor (bool): Whether the source is a torch.Tensor.

    Examples:
        Check a file path source
        >>> source, webcam, screenshot, from_img, in_memory, tensor = check_source("image.jpg")

        Check a webcam source
        >>> source, webcam, screenshot, from_img, in_memory, tensor = check_source(0)
    """
    webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
    if isinstance(source, (str, int, Path)):  # int for local usb camera
        source = str(source)
        source_lower = source.lower()
        is_file = source_lower.rpartition(".")[-1] in (IMG_FORMATS | VID_FORMATS)
        is_url = source_lower.startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
        webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
        screenshot = source_lower == "screen"
        if is_url and is_file:
            source = check_file(source)  # download
    elif isinstance(source, LOADERS):
        in_memory = True
    elif isinstance(source, (list, tuple)):
        source = autocast_list(source)  # convert all list elements to PIL or np arrays
        from_img = True
    elif isinstance(source, (Image.Image, np.ndarray)):
        from_img = True
    elif isinstance(source, torch.Tensor):
        tensor = True
    else:
        raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")

    return source, webcam, screenshot, from_img, in_memory, tensor





ultralytics.data.build.load_inference_source

load_inference_source(
    source=None,
    batch: int = 1,
    vid_stride: int = 1,
    buffer: bool = False,
    channels: int = 3,
)

Load an inference source for object detection and apply necessary transformations.

Parameters:

Name Type Description Default
source str | Path | Tensor | Image | ndarray

The input source for inference.

None
batch int

Batch size for dataloaders.

1
vid_stride int

The frame interval for video sources.

1
buffer bool

Whether stream frames will be buffered.

False
channels int

The number of input channels for the model.

3

Returns:

Type Description
Dataset

A dataset object for the specified input source with attached source_type attribute.

Examples:

Load an image source for inference

>>> dataset = load_inference_source("image.jpg", batch=1)

Load a video stream source

>>> dataset = load_inference_source("rtsp://example.com/stream", vid_stride=2)
Source code in ultralytics/data/build.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def load_inference_source(source=None, batch: int = 1, vid_stride: int = 1, buffer: bool = False, channels: int = 3):
    """
    Load an inference source for object detection and apply necessary transformations.

    Args:
        source (str | Path | torch.Tensor | PIL.Image | np.ndarray, optional): The input source for inference.
        batch (int, optional): Batch size for dataloaders.
        vid_stride (int, optional): The frame interval for video sources.
        buffer (bool, optional): Whether stream frames will be buffered.
        channels (int, optional): The number of input channels for the model.

    Returns:
        (Dataset): A dataset object for the specified input source with attached source_type attribute.

    Examples:
        Load an image source for inference
        >>> dataset = load_inference_source("image.jpg", batch=1)

        Load a video stream source
        >>> dataset = load_inference_source("rtsp://example.com/stream", vid_stride=2)
    """
    source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
    source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)

    # Dataloader
    if tensor:
        dataset = LoadTensor(source)
    elif in_memory:
        dataset = source
    elif stream:
        dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer, channels=channels)
    elif screenshot:
        dataset = LoadScreenshots(source, channels=channels)
    elif from_img:
        dataset = LoadPilAndNumpy(source, channels=channels)
    else:
        dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride, channels=channels)

    # Attach source types to the dataset
    setattr(dataset, "source_type", source_type)

    return dataset





📅 Created 1 year ago ✏️ Updated 8 months ago