YOLOv7: Saco de brindes treinável
O YOLOv7 é um detetor de objectos em tempo real de última geração que ultrapassa todos os detectores de objectos conhecidos, tanto em termos de velocidade como de precisão, na gama de 5 FPS a 160 FPS. Tem a maior precisão (56,8% AP) entre todos os detectores de objectos em tempo real conhecidos com 30 FPS ou mais em GPU V100. Além disso, o YOLOv7 supera outros detectores de objectos como o YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, e muitos outros em termos de velocidade e precisão. O modelo é treinado no conjunto de dados MS COCO a partir do zero, sem utilizar quaisquer outros conjuntos de dados ou pesos pré-treinados. O código-fonte do YOLOv7 está disponível no GitHub.
Comparação dos detectores de objectos SOTA
A partir dos resultados da tabela de comparação YOLO , sabemos que o método proposto tem a melhor relação velocidade-precisão em termos globais. Se compararmos o YOLOv7-tiny-SiLU com o YOLOv5(r6.1), o nosso método é 127 fps mais rápido e 10,7% mais preciso em termos de PA. Além disso, o YOLOv7 tem 51,4% de PA a uma taxa de fotogramas de 161 fps, enquanto o PPYOLOE-L com o mesmo PA tem apenas uma taxa de fotogramas de 78 fps. Em termos de utilização de parâmetros, o YOLOv7 é 41% inferior ao PPYOLOE-L.
Se compararmos o YOLOv7-X com uma velocidade de inferência de 114 fps com o YOLOv5(r6.1) com uma velocidade de inferência de 99 fps, o YOLOv7-X pode melhorar o PA em 3,9%. Se o YOLOv7-X for comparado com o YOLOv5(r6.1) de escala semelhante, a velocidade de inferência do YOLOv7-X é 31 fps mais rápida. Além disso, em termos de quantidade de parâmetros e de computação, o YOLOv7-X reduz 22% dos parâmetros e 8% da computação em comparação com o YOLOv5(r6.1), mas melhora o PA em 2,2%(Fonte).
Desempenho
Modelo | Parâmetros (M) |
FLOPs (G) |
Tamanho (píxeis) |
FPS | APtest/ val 50-95 |
APtest 50 |
APtest 75 |
APtest S |
APtest M |
AProva L |
---|---|---|---|---|---|---|---|---|---|---|
YOLOX-S | 9.0 | 26.8 | 640 | 102 | 40.5% / 40.5% | - | - | - | - | - |
YOLOX-M | 25.3 | 73.8 | 640 | 81 | 47.2% / 46.9% | - | - | - | - | - |
YOLOX-L | 54.2 | 155.6 | 640 | 69 | 50.1% / 49.7% | - | - | - | - | - |
YOLOX-X | 99.1 | 281.9 | 640 | 58 | 51.5% / 51.1% | - | - | - | - | - |
PPYOLOE-S | 7.9 | 17.4 | 640 | 208 | 43.1% / 42.7% | 60.5% | 46.6% | 23.2% | 46.4% | 56.9% |
PPYOLOE-M | 23.4 | 49.9 | 640 | 123 | 48.9% / 48.6% | 66.5% | 53.0% | 28.6% | 52.9% | 63.8% |
PPYOLOE-L | 52.2 | 110.1 | 640 | 78 | 51.4% / 50.9% | 68.9% | 55.6% | 31.4% | 55.3% | 66.1% |
PPYOLOE-X | 98.4 | 206.6 | 640 | 45 | 52.2% / 51.9% | 69.9% | 56.5% | 33.3% | 56.3% | 66.4% |
YOLOv5-N (r6.1) | 1.9 | 4.5 | 640 | 159 | - / 28.0% | - | - | - | - | - |
YOLOv5-S (r6.1) | 7.2 | 16.5 | 640 | 156 | - / 37.4% | - | - | - | - | - |
YOLOv5-M (r6.1) | 21.2 | 49.0 | 640 | 122 | - / 45.4% | - | - | - | - | - |
YOLOv5-L (r6.1) | 46.5 | 109.1 | 640 | 99 | - / 49.0% | - | - | - | - | - |
YOLOv5-X (r6.1) | 86.7 | 205.7 | 640 | 83 | - / 50.7% | - | - | - | - | - |
YOLOR-CSP | 52.9 | 120.4 | 640 | 106 | 51.1% / 50.8% | 69.6% | 55.7% | 31.7% | 55.3% | 64.7% |
YOLOR-CSP-X | 96.9 | 226.8 | 640 | 87 | 53.0% / 52.7% | 71.4% | 57.9% | 33.7% | 57.1% | 66.8% |
YOLOv7-tiny-SiLU | 6.2 | 13.8 | 640 | 286 | 38.7% / 38.7% | 56.7% | 41.7% | 18.8% | 42.4% | 51.9% |
YOLOv7 | 36.9 | 104.7 | 640 | 161 | 51.4% / 51.2% | 69.7% | 55.9% | 31.8% | 55.5% | 65.0% |
YOLOv7-X | 71.3 | 189.9 | 640 | 114 | 53.1% / 52.9% | 71.2% | 57.8% | 33.8% | 57.1% | 67.4% |
YOLOv5-N6 (r6.1) | 3.2 | 18.4 | 1280 | 123 | - / 36.0% | - | - | - | - | - |
YOLOv5-S6 (r6.1) | 12.6 | 67.2 | 1280 | 122 | - / 44.8% | - | - | - | - | - |
YOLOv5-M6 (r6.1) | 35.7 | 200.0 | 1280 | 90 | - / 51.3% | - | - | - | - | - |
YOLOv5-L6 (r6.1) | 76.8 | 445.6 | 1280 | 63 | - / 53.7% | - | - | - | - | - |
YOLOv5-X6 (r6.1) | 140.7 | 839.2 | 1280 | 38 | - / 55.0% | - | - | - | - | - |
YOLOR-P6 | 37.2 | 325.6 | 1280 | 76 | 53.9% / 53.5% | 71.4% | 58.9% | 36.1% | 57.7% | 65.6% |
YOLOR-W6 | 79.8 | 453.2 | 1280 | 66 | 55.2% / 54.8% | 72.7% | 60.5% | 37.7% | 59.1% | 67.1% |
YOLOR-E6 | 115.8 | 683.2 | 1280 | 45 | 55.8% / 55.7% | 73.4% | 61.1% | 38.4% | 59.7% | 67.7% |
YOLOR-D6 | 151.7 | 935.6 | 1280 | 34 | 56.5% / 56.1% | 74.1% | 61.9% | 38.9% | 60.4% | 68.7% |
YOLOv7-W6 | 70.4 | 360.0 | 1280 | 84 | 54.9% / 54.6% | 72.6% | 60.1% | 37.3% | 58.7% | 67.1% |
YOLOv7-E6 | 97.2 | 515.2 | 1280 | 56 | 56.0% / 55.9% | 73.5% | 61.2% | 38.0% | 59.9% | 68.4% |
YOLOv7-D6 | 154.7 | 806.8 | 1280 | 44 | 56.6% / 56.3% | 74.0% | 61.8% | 38.8% | 60.1% | 69.5% |
YOLOv7-E6E | 151.7 | 843.2 | 1280 | 36 | 56.8% / 56.8% | 74.4% | 62.1% | 39.3% | 60.5% | 69.0% |
Visão geral
A deteção de objectos em tempo real é um componente importante em muitos sistemas de visão por computador, incluindoo seguimento de vários objectos, a condução autónoma, a robótica e a análise de imagens médicas. Nos últimos anos, o desenvolvimento da deteção de objectos em tempo real tem-se centrado na conceção de arquitecturas eficientes e na melhoria da velocidade de inferência de vários CPUs, GPUs e unidades de processamento neural (NPUs). O YOLOv7 suporta GPU móvel e dispositivos GPU , desde a borda até a nuvem.
Ao contrário dos detectores de objectos tradicionais em tempo real, que se concentram na otimização da arquitetura, o YOLOv7 introduz um enfoque na otimização do processo de formação. Isto inclui módulos e métodos de otimização concebidos para melhorar a precisão da deteção de objectos sem aumentar o custo de inferência, um conceito conhecido como "trainable bag-of-freebies".
Caraterísticas principais
O YOLOv7 apresenta várias caraterísticas fundamentais:
-
Re-parametrização do modelo: O YOLOv7 propõe um modelo re-parametrizado planeado, que é uma estratégia aplicável a camadas em diferentes redes com o conceito de caminho de propagação de gradiente.
-
Atribuição dinâmica de etiquetas: A formação do modelo com várias camadas de saída apresenta uma nova questão: "Como atribuir objectivos dinâmicos para as saídas de diferentes ramos?" Para resolver este problema, o YOLOv7 introduz um novo método de atribuição de rótulos denominado atribuição de rótulos guiada por chumbo grosso a fino.
-
Escalonamento estendido e composto: O YOLOv7 propõe métodos de "extensão" e "escala composta" para o detetor de objectos em tempo real que podem utilizar eficazmente os parâmetros e a computação.
-
Eficiência: O método proposto pelo YOLOv7 pode reduzir eficazmente cerca de 40% dos parâmetros e 50% da computação do detetor de objectos em tempo real topo de gama, e tem uma velocidade de inferência mais rápida e uma maior precisão de deteção.
Exemplos de utilização
No momento em que este artigo foi escrito, Ultralytics apenas suporta a inferência ONNX e TensorRT para o YOLOv7.
Exportação ONNX
Para utilizar o modelo YOLOv7 ONNX com o Ultralytics:
- (Opcional) Instale Ultralytics e exporte um modelo ONNX para que as dependências necessárias sejam instaladas automaticamente:
pip install ultralytics
yolo export model=yolo11n.pt format=onnx
- Exportar o modelo YOLOv7 pretendido utilizando o exportador no repositório YOLOv7:
git clone https://github.com/WongKinYiu/yolov7
cd yolov7
python export.py --weights yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640
- Modifique o gráfico do modelo ONNX para ser compatível com o Ultralytics utilizando o seguinte script:
import numpy as np
import onnx
from onnx import helper, numpy_helper
# Load the ONNX model
model_path = "yolov7/yolov7-tiny.onnx" # Replace with your model path
model = onnx.load(model_path)
graph = model.graph
# Fix input shape to batch size 1
input_shape = graph.input[0].type.tensor_type.shape
input_shape.dim[0].dim_value = 1
# Define the output of the original model
original_output_name = graph.output[0].name
# Create slicing nodes
sliced_output_name = f"{original_output_name}_sliced"
# Define initializers for slicing (remove the first value)
start = numpy_helper.from_array(np.array([1], dtype=np.int64), name="slice_start")
end = numpy_helper.from_array(np.array([7], dtype=np.int64), name="slice_end")
axes = numpy_helper.from_array(np.array([1], dtype=np.int64), name="slice_axes")
steps = numpy_helper.from_array(np.array([1], dtype=np.int64), name="slice_steps")
graph.initializer.extend([start, end, axes, steps])
slice_node = helper.make_node(
"Slice",
inputs=[original_output_name, "slice_start", "slice_end", "slice_axes", "slice_steps"],
outputs=[sliced_output_name],
name="SliceNode",
)
graph.node.append(slice_node)
# Define segment slicing
seg1_start = numpy_helper.from_array(np.array([0], dtype=np.int64), name="seg1_start")
seg1_end = numpy_helper.from_array(np.array([4], dtype=np.int64), name="seg1_end")
seg2_start = numpy_helper.from_array(np.array([4], dtype=np.int64), name="seg2_start")
seg2_end = numpy_helper.from_array(np.array([5], dtype=np.int64), name="seg2_end")
seg3_start = numpy_helper.from_array(np.array([5], dtype=np.int64), name="seg3_start")
seg3_end = numpy_helper.from_array(np.array([6], dtype=np.int64), name="seg3_end")
graph.initializer.extend([seg1_start, seg1_end, seg2_start, seg2_end, seg3_start, seg3_end])
# Create intermediate tensors for segments
segment_1_name = f"{sliced_output_name}_segment1"
segment_2_name = f"{sliced_output_name}_segment2"
segment_3_name = f"{sliced_output_name}_segment3"
# Add segment slicing nodes
graph.node.extend(
[
helper.make_node(
"Slice",
inputs=[sliced_output_name, "seg1_start", "seg1_end", "slice_axes", "slice_steps"],
outputs=[segment_1_name],
name="SliceSegment1",
),
helper.make_node(
"Slice",
inputs=[sliced_output_name, "seg2_start", "seg2_end", "slice_axes", "slice_steps"],
outputs=[segment_2_name],
name="SliceSegment2",
),
helper.make_node(
"Slice",
inputs=[sliced_output_name, "seg3_start", "seg3_end", "slice_axes", "slice_steps"],
outputs=[segment_3_name],
name="SliceSegment3",
),
]
)
# Concatenate the segments
concat_output_name = f"{sliced_output_name}_concat"
concat_node = helper.make_node(
"Concat",
inputs=[segment_1_name, segment_3_name, segment_2_name],
outputs=[concat_output_name],
axis=1,
name="ConcatSwapped",
)
graph.node.append(concat_node)
# Reshape to [1, -1, 6]
reshape_shape = numpy_helper.from_array(np.array([1, -1, 6], dtype=np.int64), name="reshape_shape")
graph.initializer.append(reshape_shape)
final_output_name = f"{concat_output_name}_batched"
reshape_node = helper.make_node(
"Reshape",
inputs=[concat_output_name, "reshape_shape"],
outputs=[final_output_name],
name="AddBatchDimension",
)
graph.node.append(reshape_node)
# Get the shape of the reshaped tensor
shape_node_name = f"{final_output_name}_shape"
shape_node = helper.make_node(
"Shape",
inputs=[final_output_name],
outputs=[shape_node_name],
name="GetShapeDim",
)
graph.node.append(shape_node)
# Extract the second dimension
dim_1_index = numpy_helper.from_array(np.array([1], dtype=np.int64), name="dim_1_index")
graph.initializer.append(dim_1_index)
second_dim_name = f"{final_output_name}_dim1"
gather_node = helper.make_node(
"Gather",
inputs=[shape_node_name, "dim_1_index"],
outputs=[second_dim_name],
name="GatherSecondDim",
)
graph.node.append(gather_node)
# Subtract from 100 to determine how many values to pad
target_size = numpy_helper.from_array(np.array([100], dtype=np.int64), name="target_size")
graph.initializer.append(target_size)
pad_size_name = f"{second_dim_name}_padsize"
sub_node = helper.make_node(
"Sub",
inputs=["target_size", second_dim_name],
outputs=[pad_size_name],
name="CalculatePadSize",
)
graph.node.append(sub_node)
# Build the [2, 3] pad array:
# 1st row -> [0, 0, 0] (no padding at the start of any dim)
# 2nd row -> [0, pad_size, 0] (pad only at the end of the second dim)
pad_starts = numpy_helper.from_array(np.array([0, 0, 0], dtype=np.int64), name="pad_starts")
graph.initializer.append(pad_starts)
zero_scalar = numpy_helper.from_array(np.array([0], dtype=np.int64), name="zero_scalar")
graph.initializer.append(zero_scalar)
pad_ends_name = "pad_ends"
concat_pad_ends_node = helper.make_node(
"Concat",
inputs=["zero_scalar", pad_size_name, "zero_scalar"],
outputs=[pad_ends_name],
axis=0,
name="ConcatPadEnds",
)
graph.node.append(concat_pad_ends_node)
pad_values_name = "pad_values"
concat_pad_node = helper.make_node(
"Concat",
inputs=["pad_starts", pad_ends_name],
outputs=[pad_values_name],
axis=0,
name="ConcatPadStartsEnds",
)
graph.node.append(concat_pad_node)
# Create Pad operator to pad with zeros
pad_output_name = f"{final_output_name}_padded"
pad_constant_value = numpy_helper.from_array(
np.array([0.0], dtype=np.float32),
name="pad_constant_value",
)
graph.initializer.append(pad_constant_value)
pad_node = helper.make_node(
"Pad",
inputs=[final_output_name, pad_values_name, "pad_constant_value"],
outputs=[pad_output_name],
mode="constant",
name="PadToFixedSize",
)
graph.node.append(pad_node)
# Update the graph's final output to [1, 100, 6]
new_output_type = onnx.helper.make_tensor_type_proto(
elem_type=graph.output[0].type.tensor_type.elem_type, shape=[1, 100, 6]
)
new_output = onnx.helper.make_value_info(name=pad_output_name, type_proto=new_output_type)
# Replace the old output with the new one
graph.output.pop()
graph.output.extend([new_output])
# Save the modified model
onnx.save(model, "yolov7-ultralytics.onnx")
- Pode então carregar o modelo ONNX modificado e executar normalmente a inferência com ele no Ultralytics :
from ultralytics import ASSETS, YOLO
model = YOLO("yolov7-ultralytics.onnx", task="detect")
results = model(ASSETS / "bus.jpg")
Exportação TensorRT
-
Siga os passos 1-2 na secção ExportaçãoONNX .
-
Instalar o
TensorRT
Pacote Python :
pip install tensorrt
- Execute o seguinte script para converter o modelo ONNX modificado para o motor TensorRT :
# Based off of https://github.com/NVIDIA/TensorRT/blob/release/10.7/samples/python/introductory_parser_samples/onnx_resnet50.py
import tensorrt as trt
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
def GiB(val):
return val * 1 << 30
def build_engine_onnx(model_file):
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(0)
config = builder.create_builder_config()
parser = trt.OnnxParser(network, TRT_LOGGER)
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, GiB(4))
with open(model_file, "rb") as model:
if not parser.parse(model.read()):
print("ERROR: Failed to parse the ONNX file.")
for error in range(parser.num_errors):
print(parser.get_error(error))
return None
config.set_flag(trt.BuilderFlag.FP16)
engine_bytes = builder.build_serialized_network(network, config)
with open(model_file.replace("onnx", "engine"), "wb") as f:
f.write(engine_bytes)
build_engine_onnx("yolov7-ultralytics.onnx") # path to the modified ONNX file
- Carregar e executar o modelo no Ultralytics:
from ultralytics import ASSETS, YOLO
model = YOLO("yolov7-ultralytics.engine", task="detect")
results = model(ASSETS / "bus.jpg")
Citações e agradecimentos
Gostaríamos de agradecer aos autores do YOLOv7 pelas suas contribuições significativas no domínio da deteção de objectos em tempo real:
@article{wang2022yolov7,
title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2207.02696},
year={2022}
}
O artigo original do YOLOv7 pode ser encontrado no arXiv. Os autores tornaram o seu trabalho publicamente disponível e a base de código pode ser acedida no GitHub. Agradecemos os seus esforços para fazer avançar o campo e tornar o seu trabalho acessível à comunidade em geral.
FAQ
O que é o YOLOv7 e porque é considerado um avanço na deteção de objectos em tempo real?
O YOLOv7 é um modelo avançado de deteção de objectos em tempo real que atinge uma velocidade e precisão sem paralelo. Ultrapassa outros modelos, tais como YOLOX, YOLOv5 e PPYOLOE, tanto na utilização de parâmetros como na velocidade de inferência. As caraterísticas distintivas do YOLOv7 incluem a re-parametrização do modelo e a atribuição dinâmica de etiquetas, que optimizam o seu desempenho sem aumentar os custos de inferência. Para mais detalhes técnicos sobre a sua arquitetura e métricas de comparação com outros detectores de objectos de última geração, consulte o documento YOLOv7.
Como é que o YOLOv7 melhora em relação aos modelos anteriores YOLO como o YOLOv4 e YOLOv5?
O YOLOv7 introduz várias inovações, incluindo a re-parametrização do modelo e a atribuição dinâmica de etiquetas, que melhoram o processo de formação e aumentam a precisão da inferência. Em comparação com YOLOv5, o YOLOv7 aumenta significativamente a velocidade e a precisão. Por exemplo, o YOLOv7-X melhora a precisão em 2,2% e reduz os parâmetros em 22% em comparação com YOLOv5-X. As comparações detalhadas podem ser encontradas na tabela de desempenho YOLOv7 comparação com detectores de objectos SOTA.
Posso utilizar o YOLOv7 com as ferramentas e plataformas Ultralytics ?
Atualmente, Ultralytics apenas suporta a inferência YOLOv7 ONNX e TensorRT . Para executar a versão exportada ONNX e TensorRT do YOLOv7 com o Ultralytics, consulte a secção Exemplos de utilização.
Como posso treinar um modelo YOLOv7 personalizado utilizando o meu conjunto de dados?
Para instalar e treinar um modelo YOLOv7 personalizado, siga estes passos:
- Clonar o repositório YOLOv7:
git clone https://github.com/WongKinYiu/yolov7
- Navegue até ao diretório clonado e instale as dependências:
cd yolov7 pip install -r requirements.txt
-
Prepare o seu conjunto de dados e configure os parâmetros do modelo de acordo com as instruções de utilização fornecidas no repositório. Para mais orientações, visite o repositório GitHub do YOLOv7 para obter as informações e actualizações mais recentes.
-
Após o treino, pode exportar o modelo para ONNX ou TensorRT para utilização no Ultralytics , conforme mostrado em Exemplos de utilização.
Quais são as principais caraterísticas e optimizações introduzidas no YOLOv7?
O YOLOv7 oferece várias caraterísticas chave que revolucionam a deteção de objectos em tempo real:
- Re-parametrização do modelo: Melhora o desempenho do modelo, optimizando os caminhos de propagação do gradiente.
- Atribuição dinâmica de rótulos: Utiliza um método guiado por chumbo grosso a fino para atribuir alvos dinâmicos para saídas em diferentes ramos, melhorando a precisão.
- Escalonamento estendido e composto: Utiliza parâmetros e computação de forma eficiente para escalar o modelo para várias aplicações em tempo real.
- Eficiência: Reduz a contagem de parâmetros em 40% e a computação em 50% em comparação com outros modelos de última geração, ao mesmo tempo que atinge velocidades de inferência mais rápidas.
Para mais informações sobre estas funcionalidades, consulte a secção Descrição geral do YOLOv7.