Ir para o conteúdo

Exportação MNN para Modelos YOLO11 e Implantação

MNN

Arquitetura MNN

MNN é uma estrutura de deep learning altamente eficiente e leve. Ele suporta inferência e treinamento de modelos de deep learning e tem desempenho líder do setor para inferência e treinamento no dispositivo. Atualmente, o MNN foi integrado a mais de 30 aplicativos da Alibaba Inc, como Taobao, Tmall, Youku, DingTalk, Xianyu, etc., cobrindo mais de 70 cenários de uso, como transmissão ao vivo, captura de vídeo curto, recomendação de pesquisa, pesquisa de produtos por imagem, marketing interativo, distribuição de patrimônio, controle de risco de segurança. Além disso, o MNN também é usado em dispositivos embarcados, como IoT.

Exportar para MNN: Convertendo Seu Modelo YOLO11

Você pode expandir a compatibilidade do modelo e a flexibilidade de implantação convertendo modelos Ultralytics YOLO para o formato MNN. Esta conversão otimiza seus modelos para ambientes móveis e embarcados, garantindo um desempenho eficiente em dispositivos com recursos limitados.

Instalação

Para instalar os pacotes necessários, execute:

Instalação

# Install the required package for YOLO11 and MNN
pip install ultralytics
pip install MNN

Utilização

Todos os modelos Ultralytics YOLO11 são projetados para suportar a exportação, facilitando a integração em seu fluxo de trabalho de implantação preferido. Você pode visualizar a lista completa de formatos de exportação e opções de configuração suportados para escolher a melhor configuração para sua aplicação.

Utilização

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export the model to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn'

# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")

# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
# Export a YOLO11n PyTorch model to MNN format
yolo export model=yolo11n.pt format=mnn # creates 'yolo11n.mnn'

# Run inference with the exported model
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'

Argumentos de Exportação

Argumento Tipo Padrão Descrição
format str 'mnn' Formato de destino para o modelo exportado, definindo a compatibilidade com vários ambientes de implementação.
imgsz int ou tuple 640 Tamanho de imagem desejado para a entrada do modelo. Pode ser um inteiro para imagens quadradas ou uma tupla (height, width) para dimensões específicas.
half bool False Ativa a quantização FP16 (meia precisão), reduzindo o tamanho do modelo e potencialmente acelerando a inferência em hardware suportado.
int8 bool False Ativa a quantização INT8, comprimindo ainda mais o modelo e acelerando a inferência com perda mínima de precisão, principalmente para dispositivos de borda.
batch int 1 Especifica o tamanho do lote de inferência do modelo de exportação ou o número máximo de imagens que o modelo exportado processará simultaneamente em predict modo.
device str None Especifica o dispositivo para exportação: GPU (device=0CPU (device=cpu), MPS para Apple silicon (device=mps).

Para mais detalhes sobre o processo de exportação, visite a página de documentação da Ultralytics sobre exportação.

Inferência Somente MNN

Uma função que depende exclusivamente de MNN para inferência e pré-processamento YOLO11 é implementada, fornecendo versões em Python e C++ para fácil implantação em qualquer cenário.

MNN

import argparse

import MNN
import MNN.cv as cv2
import MNN.numpy as np


def inference(model, img, precision, backend, thread):
    config = {}
    config["precision"] = precision
    config["backend"] = backend
    config["numThread"] = thread
    rt = MNN.nn.create_runtime_manager((config,))
    # net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
    net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
    original_image = cv2.imread(img)
    ih, iw, _ = original_image.shape
    length = max((ih, iw))
    scale = length / 640
    image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
    image = cv2.resize(
        image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
    )
    image = image[..., ::-1]  # BGR to RGB
    input_var = np.expand_dims(image, 0)
    input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
    output_var = net.forward(input_var)
    output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
    output_var = output_var.squeeze()
    # output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    cx = output_var[0]
    cy = output_var[1]
    w = output_var[2]
    h = output_var[3]
    probs = output_var[4:]
    # [cx, cy, w, h] -> [y0, x0, y1, x1]
    x0 = cx - w * 0.5
    y0 = cy - h * 0.5
    x1 = cx + w * 0.5
    y1 = cy + h * 0.5
    boxes = np.stack([x0, y0, x1, y1], axis=1)
    # ensure ratio is within the valid range [0.0, 1.0]
    boxes = np.clip(boxes, 0, 1)
    # get max prob and idx
    scores = np.max(probs, 0)
    class_ids = np.argmax(probs, 0)
    result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
    print(result_ids.shape)
    # nms result box, score, ids
    result_boxes = boxes[result_ids]
    result_scores = scores[result_ids]
    result_class_ids = class_ids[result_ids]
    for i in range(len(result_boxes)):
        x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
        y0 = int(y0 * scale)
        y1 = int(y1 * scale)
        x0 = int(x0 * scale)
        x1 = int(x1 * scale)
        # clamp to the original image size to handle cases where padding was applied
        x1 = min(iw, x1)
        y1 = min(ih, y1)
        print(result_class_ids[i])
        cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
    cv2.imwrite("res.jpg", original_image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
    parser.add_argument("--img", type=str, required=True, help="the input image path")
    parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
    parser.add_argument(
        "--backend",
        type=str,
        default="CPU",
        help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
    )
    parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
    args = parser.parse_args()
    inference(args.model, args.img, args.precision, args.backend, args.thread)
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>

#include <cv/cv.hpp>

using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;

int main(int argc, const char* argv[]) {
    if (argc < 3) {
        MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
        return 0;
    }
    int thread = 4;
    int precision = 0;
    int forwardType = MNN_FORWARD_CPU;
    if (argc >= 4) {
        forwardType = atoi(argv[3]);
    }
    if (argc >= 5) {
        precision = atoi(argv[4]);
    }
    if (argc >= 6) {
        thread = atoi(argv[5]);
    }
    MNN::ScheduleConfig sConfig;
    sConfig.type = static_cast<MNNForwardType>(forwardType);
    sConfig.numThread = thread;
    BackendConfig bConfig;
    bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
    sConfig.backendConfig = &bConfig;
    std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
    if(rtmgr == nullptr) {
        MNN_ERROR("Empty RuntimeManger\n");
        return 0;
    }
    rtmgr->setCache(".cachefile");

    std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
    auto original_image = imread(argv[2]);
    auto dims = original_image->getInfo()->dim;
    int ih = dims[0];
    int iw = dims[1];
    int len = ih > iw ? ih : iw;
    float scale = len / 640.0;
    std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
    auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
    auto image = _Pad(original_image, pads, CONSTANT);
    image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
    image = cvtColor(image, COLOR_BGR2RGB);
    auto input = _Unsqueeze(image, {0});
    input = _Convert(input, NC4HW4);
    auto outputs = net->onForward({input});
    auto output = _Convert(outputs[0], NCHW);
    output = _Squeeze(output);
    // output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
    auto cx = _Gather(output, _Scalar<int>(0));
    auto cy = _Gather(output, _Scalar<int>(1));
    auto w = _Gather(output, _Scalar<int>(2));
    auto h = _Gather(output, _Scalar<int>(3));
    std::vector<int> startvals { 4, 0 };
    auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
    std::vector<int> sizevals { -1, -1 };
    auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
    auto probs = _Slice(output, start, size);
    // [cx, cy, w, h] -> [y0, x0, y1, x1]
    auto x0 = cx - w * _Const(0.5);
    auto y0 = cy - h * _Const(0.5);
    auto x1 = cx + w * _Const(0.5);
    auto y1 = cy + h * _Const(0.5);
    auto boxes = _Stack({x0, y0, x1, y1}, 1);
    // ensure ratio is within the valid range [0.0, 1.0]
    boxes = _Maximum(boxes, _Scalar<float>(0.0f));
    boxes = _Minimum(boxes, _Scalar<float>(1.0f));
    auto scores = _ReduceMax(probs, {0});
    auto ids = _ArgMax(probs, 0);
    auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
    auto result_ptr = result_ids->readMap<int>();
    auto box_ptr = boxes->readMap<float>();
    auto ids_ptr = ids->readMap<int>();
    auto score_ptr = scores->readMap<float>();
    for (int i = 0; i < 100; i++) {
        auto idx = result_ptr[i];
        if (idx < 0) break;
        auto x0 = box_ptr[idx * 4 + 0] * scale;
        auto y0 = box_ptr[idx * 4 + 1] * scale;
        auto x1 = box_ptr[idx * 4 + 2] * scale;
        auto y1 = box_ptr[idx * 4 + 3] * scale;
        // clamp to the original image size to handle cases where padding was applied
        x1 = std::min(static_cast<float>(iw), x1);
        y1 = std::min(static_cast<float>(ih), y1);
        auto class_idx = ids_ptr[idx];
        auto score = score_ptr[idx];
        rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
    }
    if (imwrite("res.jpg", original_image)) {
        MNN_PRINT("result image write to `res.jpg`.\n");
    }
    rtmgr->updateCache();
    return 0;
}

Resumo

Neste guia, apresentamos como exportar o modelo Ultralytics YOLO11 para MNN e usar MNN para inferência. O formato MNN oferece excelente desempenho para aplicações de IA de borda, tornando-o ideal para implantar modelos de visão computacional em dispositivos com recursos limitados.

Para mais informações sobre o uso, consulte a documentação do MNN.

FAQ

Como exportar modelos Ultralytics YOLO11 para o formato MNN?

Para exportar o seu modelo Ultralytics YOLO11 para o formato MNN, siga estes passos:

Exportar

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("yolo11n.pt")

# Export to MNN format
model.export(format="mnn")  # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True)  # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True)  # creates 'yolo11n.mnn' with int8 weight
yolo export model=yolo11n.pt format=mnn           # creates 'yolo11n.mnn' with fp32 weight
yolo export model=yolo11n.pt format=mnn half=True # creates 'yolo11n.mnn' with fp16 weight
yolo export model=yolo11n.pt format=mnn int8=True # creates 'yolo11n.mnn' with int8 weight

Para opções de exportação detalhadas, consulte a página Exportar na documentação.

Como realizar a previsão com um modelo YOLO11 MNN exportado?

Para prever com um modelo YOLO11 MNN exportado, use o predict função da classe YOLO.

Prever

from ultralytics import YOLO

# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")

# Export to MNN format
results = model("https://ultralytics.com/images/bus.jpg")  # predict with `fp32`
results = model("https://ultralytics.com/images/bus.jpg", half=True)  # predict with `fp16` if device support

for result in results:
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg'             # predict with `fp32`
yolo predict model='yolo11n.mnn' source='https://ultralytics.com/images/bus.jpg' --half=True # predict with `fp16` if device support

Quais plataformas são suportadas para MNN?

O MNN é versátil e suporta várias plataformas:

  • Mobile: Android, iOS, Harmony.
  • Sistemas Embarcados e Dispositivos IoT: Dispositivos como Raspberry Pi e NVIDIA Jetson.
  • Desktop e Servidores: Linux, Windows e macOS.

Como posso implantar modelos Ultralytics YOLO11 MNN em dispositivos móveis?

Para implementar os seus modelos YOLO11 em dispositivos móveis:

  1. Construir para Android: Siga o guia MNN Android.
  2. Construir para iOS: Siga o guia MNN iOS.
  3. Construir para Harmony: Siga o guia MNN Harmony.


📅 Criado há 8 meses ✏️ Atualizado há 3 meses

Comentários