Bases: OpenAILike
The StepFun class is a subclass of OpenAILike and is used to interact with the StepFun model.
Parameters
model (str): The name of the Stepfun model to use. See https://platform.stepfun.com/docs/llm/modeloverview for options.
context_window (int): The maximum size of the context window for the model. See https://platform.stepfun.com/docs/llm/modeloverview for options.
is_chat_model (bool): Indicates whether the model is a chat model.
Attributes
model (str): The name of the Stepfun model to use.
context_window (int): The maximum size of the context window for the model.
is_chat_model (bool): Indicates whether the model is a chat model.
Source code in llama-index-integrations/llms/llama-index-llms-stepfun/llama_index/llms/stepfun/base.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94 | class StepFun(OpenAILike):
"""
The StepFun class is a subclass of OpenAILike and is used to interact with the StepFun model.
Parameters
----------
model (str): The name of the Stepfun model to use. See https://platform.stepfun.com/docs/llm/modeloverview for options.
context_window (int): The maximum size of the context window for the model. See https://platform.stepfun.com/docs/llm/modeloverview for options.
is_chat_model (bool): Indicates whether the model is a chat model.
Attributes
----------
model (str): The name of the Stepfun model to use.
context_window (int): The maximum size of the context window for the model.
is_chat_model (bool): Indicates whether the model is a chat model.
"""
model: str = Field(
description="The Stepfun model to use. See https://platform.stepfun.com/docs/llm/modeloverview for options."
)
context_window: int = Field(
default=DEFAULT_CONTEXT_WINDOW,
description="The maximum number of context tokens for the model. See https://platform.stepfun.com/docs/llm/modeloverview for options.",
gt=0,
)
is_chat_model: bool = Field(
default=True,
description=LLMMetadata.model_fields["is_chat_model"].description,
)
def __init__(
self,
model: str = DEFAULT_MODEL,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: int = DEFAULT_NUM_OUTPUTS,
additional_kwargs: Optional[Dict[str, Any]] = None,
max_retries: int = 5,
api_base: Optional[str] = DEFAULT_API_BASE,
api_key: Optional[str] = None,
**kwargs: Any,
) -> None:
"""
Initialize the OpenAI API client.
Args:
model (str): The name of the model to use. Defaults to DEFAULT_MODEL.
temperature (float): The temperature to use for the model. Defaults to DEFAULT_TEMPERATURE.
max_tokens (int): The maximum number of tokens to generate. Defaults to DEFAULT_NUM_OUTPUTS.
additional_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the model. Defaults to None.
max_retries (int): The maximum number of retries to make when calling the API. Defaults to 5.
api_base (Optional[str]): The base URL for the API. Defaults to DEFAULT_API_BASE.
api_key (Optional[str]): The API key to use. Defaults to None.
**kwargs (Any): Additional keyword arguments to pass to the model.
Returns:
None
"""
additional_kwargs = additional_kwargs or {}
api_base = get_from_param_or_env("api_base", api_base, "STEPFUN_API_BASE")
api_key = get_from_param_or_env("api_key", api_key, "STEPFUN_API_KEY")
super().__init__(
model=model,
temperature=temperature,
max_tokens=max_tokens,
api_base=api_base,
api_key=api_key,
additional_kwargs=additional_kwargs,
max_retries=max_retries,
**kwargs,
)
@classmethod
def class_name(cls) -> str:
return "Stpefun_LLM"
|