Skip to content

Sbert rerank

SentenceTransformerRerank #

Bases: BaseNodePostprocessor

Source code in llama-index-integrations/postprocessor/llama-index-postprocessor-sbert-rerank/llama_index/postprocessor/sbert_rerank/base.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
class SentenceTransformerRerank(BaseNodePostprocessor):
    model: str = Field(description="Sentence transformer model name.")
    top_n: int = Field(description="Number of nodes to return sorted by score.")
    device: str = Field(
        default="cpu",
        description="Device to use for sentence transformer.",
    )
    keep_retrieval_score: bool = Field(
        default=False,
        description="Whether to keep the retrieval score in metadata.",
    )
    cross_encoder_kwargs: dict = Field(
        default_factory=dict,
        description="Additional keyword arguments for CrossEncoder initialization. "
        "device and model should not be included here.",
    )
    _model: Any = PrivateAttr()

    def __init__(
        self,
        top_n: int = 2,
        model: str = "cross-encoder/stsb-distilroberta-base",
        device: Optional[str] = None,
        keep_retrieval_score: Optional[bool] = False,
        cache_dir: Optional[Union[str, Path]] = None,
        cross_encoder_kwargs: Optional[dict] = None,
    ):
        try:
            from sentence_transformers import CrossEncoder
        except ImportError:
            raise ImportError(
                "Cannot import sentence-transformers or torch package,",
                "please `pip install torch sentence-transformers`",
            )

        super().__init__(
            top_n=top_n,
            model=model,
            device=device,
            keep_retrieval_score=keep_retrieval_score,
            cross_encoder_kwargs=cross_encoder_kwargs or {},
        )

        init_kwargs = self.cross_encoder_kwargs.copy()
        if "device" in init_kwargs or "model" in init_kwargs:
            raise ValueError(
                "'device' and 'model' should not be specified in 'cross_encoder_kwargs'. "
                "Use the top-level 'device' and 'model' parameters instead."
            )

        # Set default max_length if not provided by the user in kwargs.
        if "max_length" not in init_kwargs:
            init_kwargs["max_length"] = DEFAULT_SENTENCE_TRANSFORMER_MAX_LENGTH

        # Explicit arguments from the constructor take precedence over kwargs
        resolved_device = infer_torch_device() if device is None else device
        init_kwargs["device"] = resolved_device
        if cache_dir:
            init_kwargs["cache_dir"] = cache_dir

        self._model = CrossEncoder(
            model_name=model,
            **init_kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "SentenceTransformerRerank"

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        dispatcher.event(
            ReRankStartEvent(
                query=query_bundle,
                nodes=nodes,
                top_n=self.top_n,
                model_name=self.model,
            )
        )

        if query_bundle is None:
            raise ValueError("Missing query bundle in extra info.")
        if len(nodes) == 0:
            return []

        query_and_nodes = [
            (
                query_bundle.query_str,
                node.node.get_content(metadata_mode=MetadataMode.EMBED),
            )
            for node in nodes
        ]

        with self.callback_manager.event(
            CBEventType.RERANKING,
            payload={
                EventPayload.NODES: nodes,
                EventPayload.MODEL_NAME: self.model,
                EventPayload.QUERY_STR: query_bundle.query_str,
                EventPayload.TOP_K: self.top_n,
            },
        ) as event:
            scores = self._model.predict(query_and_nodes)

            assert len(scores) == len(nodes)

            for node, score in zip(nodes, scores):
                if self.keep_retrieval_score:
                    # keep the retrieval score in metadata
                    node.node.metadata["retrieval_score"] = node.score
                node.score = float(score)

            new_nodes = sorted(nodes, key=lambda x: -x.score if x.score else 0)[
                : self.top_n
            ]
            event.on_end(payload={EventPayload.NODES: new_nodes})

        dispatcher.event(ReRankEndEvent(nodes=new_nodes))
        return new_nodes