Index
LLM #
Bases: BaseLLM
The LLM class is the main class for interacting with language models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system_prompt
|
str | None
|
System prompt for LLM calls. |
None
|
messages_to_prompt
|
MessagesToPromptType | None
|
Function to convert a list of messages to an LLM prompt. |
None
|
completion_to_prompt
|
CompletionToPromptType | None
|
Function to convert a completion to an LLM prompt. |
None
|
output_parser
|
BaseOutputParser | None
|
Output parser to parse, validate, and correct errors programmatically. |
None
|
pydantic_program_mode
|
PydanticProgramMode
|
|
<PydanticProgramMode.DEFAULT: 'default'>
|
query_wrapper_prompt
|
BasePromptTemplate | None
|
Query wrapper prompt for LLM calls. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
system_prompt |
Optional[str]
|
System prompt for LLM calls. |
messages_to_prompt |
Callable
|
Function to convert a list of messages to an LLM prompt. |
completion_to_prompt |
Callable
|
Function to convert a completion to an LLM prompt. |
output_parser |
Optional[BaseOutputParser]
|
Output parser to parse, validate, and correct errors programmatically. |
pydantic_program_mode |
PydanticProgramMode
|
Pydantic program mode to use for structured prediction. |
metadata
abstractmethod
property
#
metadata: LLMMetadata
LLM metadata.
Returns:
Name | Type | Description |
---|---|---|
LLMMetadata |
LLMMetadata
|
LLM metadata containing various information about the LLM. |
class_name
classmethod
#
class_name() -> str
Get the class name, used as a unique ID in serialization.
This provides a key that makes serialization robust against actual class name changes.
as_query_component #
as_query_component(partial: Optional[Dict[str, Any]] = None, **kwargs: Any) -> QueryComponent
Get query component.
convert_chat_messages #
convert_chat_messages(messages: Sequence[ChatMessage]) -> List[Any]
Convert chat messages to an LLM specific message format.
chat
abstractmethod
#
chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse
Chat endpoint for LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
Sequence[ChatMessage]
|
Sequence of chat messages. |
required |
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
ChatResponse |
ChatResponse
|
Chat response from the LLM. |
Examples:
from llama_index.core.llms import ChatMessage
response = llm.chat([ChatMessage(role="user", content="Hello")])
print(response.content)
complete
abstractmethod
#
complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse
Completion endpoint for LLM.
If the LLM is a chat model, the prompt is transformed into a single user
message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
Prompt to send to the LLM. |
required |
formatted
|
bool
|
Whether the prompt is already formatted for the LLM, by default False. |
False
|
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
CompletionResponse |
CompletionResponse
|
Completion response from the LLM. |
Examples:
response = llm.complete("your prompt")
print(response.text)
stream_chat
abstractmethod
#
stream_chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseGen
Streaming chat endpoint for LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
Sequence[ChatMessage]
|
Sequence of chat messages. |
required |
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Yields:
Name | Type | Description |
---|---|---|
ChatResponse |
ChatResponseGen
|
A generator of ChatResponse objects, each containing a new token of the response. |
Examples:
from llama_index.core.llms import ChatMessage
gen = llm.stream_chat([ChatMessage(role="user", content="Hello")])
for response in gen:
print(response.delta, end="", flush=True)
stream_complete
abstractmethod
#
stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen
Streaming completion endpoint for LLM.
If the LLM is a chat model, the prompt is transformed into a single user
message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
Prompt to send to the LLM. |
required |
formatted
|
bool
|
Whether the prompt is already formatted for the LLM, by default False. |
False
|
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Yields:
Name | Type | Description |
---|---|---|
CompletionResponse |
CompletionResponseGen
|
A generator of CompletionResponse objects, each containing a new token of the response. |
Examples:
gen = llm.stream_complete("your prompt")
for response in gen:
print(response.text, end="", flush=True)
achat
abstractmethod
async
#
achat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse
Async chat endpoint for LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
Sequence[ChatMessage]
|
Sequence of chat messages. |
required |
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
ChatResponse |
ChatResponse
|
Chat response from the LLM. |
Examples:
from llama_index.core.llms import ChatMessage
response = await llm.achat([ChatMessage(role="user", content="Hello")])
print(response.content)
acomplete
abstractmethod
async
#
acomplete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse
Async completion endpoint for LLM.
If the LLM is a chat model, the prompt is transformed into a single user
message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
Prompt to send to the LLM. |
required |
formatted
|
bool
|
Whether the prompt is already formatted for the LLM, by default False. |
False
|
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
CompletionResponse |
CompletionResponse
|
Completion response from the LLM. |
Examples:
response = await llm.acomplete("your prompt")
print(response.text)
astream_chat
abstractmethod
async
#
astream_chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponseAsyncGen
Async streaming chat endpoint for LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
Sequence[ChatMessage]
|
Sequence of chat messages. |
required |
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Yields:
Name | Type | Description |
---|---|---|
ChatResponse |
ChatResponseAsyncGen
|
An async generator of ChatResponse objects, each containing a new token of the response. |
Examples:
from llama_index.core.llms import ChatMessage
gen = await llm.astream_chat([ChatMessage(role="user", content="Hello")])
async for response in gen:
print(response.delta, end="", flush=True)
astream_complete
abstractmethod
async
#
astream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseAsyncGen
Async streaming completion endpoint for LLM.
If the LLM is a chat model, the prompt is transformed into a single user
message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
str
|
Prompt to send to the LLM. |
required |
formatted
|
bool
|
Whether the prompt is already formatted for the LLM, by default False. |
False
|
kwargs
|
Any
|
Additional keyword arguments to pass to the LLM. |
{}
|
Yields:
Name | Type | Description |
---|---|---|
CompletionResponse |
CompletionResponseAsyncGen
|
An async generator of CompletionResponse objects, each containing a new token of the response. |
Examples:
gen = await llm.astream_complete("your prompt")
async for response in gen:
print(response.text, end="", flush=True)
structured_predict #
structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Model
Structured predict.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
BaseModel |
Model
|
The structured prediction output. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
output = llm.structured_predict(Test, prompt, topic="cats")
print(output.name)
astructured_predict
async
#
astructured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Model
Async Structured predict.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
BaseModel |
Model
|
The structured prediction output. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
output = await llm.astructured_predict(Test, prompt, topic="cats")
print(output.name)
stream_structured_predict #
stream_structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> Generator[Union[Model, FlexibleModel], None, None]
Stream Structured predict.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Generator |
None
|
A generator returning partial copies of the model or list of models. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
stream_output = llm.stream_structured_predict(Test, prompt, topic="cats")
for partial_output in stream_output:
# stream partial outputs until completion
print(partial_output.name)
astream_structured_predict
async
#
astream_structured_predict(output_cls: Type[Model], prompt: PromptTemplate, llm_kwargs: Optional[Dict[str, Any]] = None, **prompt_args: Any) -> AsyncGenerator[Union[Model, FlexibleModel], None]
Async Stream Structured predict.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_cls
|
BaseModel
|
Output class to use for structured prediction. |
required |
prompt
|
PromptTemplate
|
Prompt template to use for structured prediction. |
required |
llm_kwargs
|
Optional[Dict[str, Any]]
|
Arguments that are passed down to the LLM invoked by the program. |
None
|
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Generator |
AsyncGenerator[Union[Model, FlexibleModel], None]
|
A generator returning partial copies of the model or list of models. |
Examples:
from pydantic import BaseModel
class Test(BaseModel):
\"\"\"My test class.\"\"\"
name: str
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please predict a Test with a random name related to {topic}.")
stream_output = await llm.astream_structured_predict(Test, prompt, topic="cats")
async for partial_output in stream_output:
# stream partial outputs until completion
print(partial_output.name)
predict #
predict(prompt: BasePromptTemplate, **prompt_args: Any) -> str
Predict for a given prompt.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The prediction output. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
output = llm.predict(prompt, topic="cats")
print(output)
stream #
stream(prompt: BasePromptTemplate, **prompt_args: Any) -> TokenGen
Stream predict for a given prompt.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Yields:
Name | Type | Description |
---|---|---|
str |
TokenGen
|
Each streamed token. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
gen = llm.stream_predict(prompt, topic="cats")
for token in gen:
print(token, end="", flush=True)
apredict
async
#
apredict(prompt: BasePromptTemplate, **prompt_args: Any) -> str
Async Predict for a given prompt.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
BasePromptTemplate
|
The prompt to use for prediction. |
required |
prompt_args
|
Any
|
Additional arguments to format the prompt with. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The prediction output. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
output = await llm.apredict(prompt, topic="cats")
print(output)
astream
async
#
astream(prompt: BasePromptTemplate, **prompt_args: Any) -> TokenAsyncGen
Async stream predict for a given prompt.
prompt (BasePromptTemplate): The prompt to use for prediction. prompt_args (Any): Additional arguments to format the prompt with.
Yields:
Name | Type | Description |
---|---|---|
str |
TokenAsyncGen
|
An async generator that yields strings of tokens. |
Examples:
from llama_index.core.prompts import PromptTemplate
prompt = PromptTemplate("Please write a random name related to {topic}.")
gen = await llm.astream_predict(prompt, topic="cats")
async for token in gen:
print(token, end="", flush=True)
predict_and_call #
predict_and_call(tools: List[BaseTool], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, **kwargs: Any) -> AgentChatResponse
Predict and call the tool.
By default uses a ReAct agent to do tool calling (through text prompting), but function calling LLMs will implement this differently.
apredict_and_call
async
#
apredict_and_call(tools: List[BaseTool], user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, verbose: bool = False, **kwargs: Any) -> AgentChatResponse
Predict and call the tool.
as_structured_llm #
as_structured_llm(output_cls: Type[BaseModel], **kwargs: Any) -> StructuredLLM
Return a structured LLM around a given object.
MessageRole #
Bases: str
, Enum
Message role.
Source code in llama-index-core/llama_index/core/base/llms/types.py
40 41 42 43 44 45 46 47 48 49 50 |
|
TextBlock #
Bases: BaseModel
A representation of text data to directly pass to/from the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_type
|
Literal['text']
|
|
'text'
|
text
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/base/llms/types.py
53 54 55 56 57 |
|
ImageBlock #
Bases: BaseModel
A representation of image data to directly pass to/from the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_type
|
Literal['image']
|
|
'image'
|
image
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | None
|
|
None
|
url
|
AnyUrl | str | None
|
|
None
|
image_mimetype
|
str | None
|
|
None
|
detail
|
str | None
|
|
None
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
urlstr_to_anyurl
classmethod
#
urlstr_to_anyurl(url: str | AnyUrl | None) -> AnyUrl | None
Store the url as Anyurl.
Source code in llama-index-core/llama_index/core/base/llms/types.py
70 71 72 73 74 75 76 77 78 79 |
|
image_to_base64 #
image_to_base64() -> Self
Store the image as base64 and guess the mimetype when possible.
In case the model was built passing image data but without a mimetype, we try to guess it using the filetype library. To avoid resource-intense operations, we won't load the path or the URL to guess the mimetype.
Source code in llama-index-core/llama_index/core/base/llms/types.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
resolve_image #
resolve_image(as_base64: bool = False) -> BytesIO
Resolve an image such that PIL can read it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
as_base64
|
bool
|
whether the resolved image should be returned as base64-encoded bytes |
False
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
AudioBlock #
Bases: BaseModel
A representation of audio data to directly pass to/from the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_type
|
Literal['audio']
|
|
'audio'
|
audio
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | None
|
|
None
|
url
|
AnyUrl | str | None
|
|
None
|
format
|
str | None
|
|
None
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
urlstr_to_anyurl
classmethod
#
urlstr_to_anyurl(url: str | AnyUrl) -> AnyUrl
Store the url as Anyurl.
Source code in llama-index-core/llama_index/core/base/llms/types.py
152 153 154 155 156 157 158 |
|
audio_to_base64 #
audio_to_base64() -> Self
Store the audio as base64 and guess the mimetype when possible.
In case the model was built passing audio data but without a mimetype, we try to guess it using the filetype library. To avoid resource-intense operations, we won't load the path or the URL to guess the mimetype.
Source code in llama-index-core/llama_index/core/base/llms/types.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
resolve_audio #
resolve_audio(as_base64: bool = False) -> BytesIO
Resolve an audio such that PIL can read it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
as_base64
|
bool
|
whether the resolved audio should be returned as base64-encoded bytes |
False
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
DocumentBlock #
Bases: BaseModel
A representation of a document to directly pass to the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_type
|
Literal['document']
|
|
'document'
|
data
|
bytes | None
|
|
None
|
path
|
Annotated[Path, PathType] | str | None
|
|
None
|
url
|
str | None
|
|
None
|
title
|
str | None
|
|
None
|
document_mimetype
|
str | None
|
|
None
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
resolve_document #
resolve_document() -> BytesIO
Resolve a document such that it is represented by a BufferIO object.
Source code in llama-index-core/llama_index/core/base/llms/types.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
CachePoint #
Bases: BaseModel
Used to set the point to cache up to, if the LLM supports caching.
Source code in llama-index-core/llama_index/core/base/llms/types.py
299 300 301 302 303 |
|
CitableBlock #
Bases: BaseModel
Supports providing citable content to LLMs that have built-in citation support.
Source code in llama-index-core/llama_index/core/base/llms/types.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
CitationBlock #
Bases: BaseModel
A representation of cited content from past messages.
Source code in llama-index-core/llama_index/core/base/llms/types.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
ChatMessage #
Bases: BaseModel
Chat message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
role
|
MessageRole
|
|
<MessageRole.USER: 'user'>
|
blocks
|
list[Annotated[Union[TextBlock, ImageBlock, AudioBlock, DocumentBlock], FieldInfo]]
|
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. |
<dynamic>
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
content
property
writable
#
content: str | None
Keeps backward compatibility with the old content
field.
Returns:
Type | Description |
---|---|
str | None
|
The cumulative content of the TextBlock blocks, None if there are none. |
legacy_additional_kwargs_image #
legacy_additional_kwargs_image() -> Self
Provided for backward compatibility.
If additional_kwargs
contains an images
key, assume the value is a list
of ImageDocument and convert them into image blocks.
Source code in llama-index-core/llama_index/core/base/llms/types.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
LogProb #
Bases: BaseModel
LogProb of a token.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logprob
|
float
|
Convert a string or number to a floating-point number, if possible. |
<dynamic>
|
bytes
|
List[int]
|
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. |
<dynamic>
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
470 471 472 473 474 475 |
|
ChatResponse #
Bases: BaseModel
Chat response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message
|
ChatMessage
|
|
required |
raw
|
Any | None
|
|
None
|
delta
|
str | None
|
|
None
|
logprobs
|
List[List[LogProb]] | None
|
|
None
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
479 480 481 482 483 484 485 486 487 488 489 |
|
CompletionResponse #
Bases: BaseModel
Completion response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
|
required |
raw
|
Any | None
|
|
None
|
logprobs
|
List[List[LogProb]] | None
|
|
None
|
delta
|
str | None
|
|
None
|
Fields
text: Text content of the response if not streaming, or if streaming, the current extent of streamed text. additional_kwargs: Additional information on the response(i.e. token counts, function calling information). raw: Optional raw JSON that was parsed to populate text, if relevant. delta: New text that just streamed in (only relevant when streaming).
Source code in llama-index-core/llama_index/core/base/llms/types.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
LLMMetadata #
Bases: BaseModel
Parameters:
Name | Type | Description | Default |
---|---|---|---|
context_window
|
int
|
Total number of tokens the model can be input and output for one response. |
3900
|
num_output
|
int
|
Number of tokens the model can output when generating a response. |
256
|
is_chat_model
|
bool
|
Set True if the model exposes a chat interface (i.e. can be passed a sequence of messages, rather than text), like OpenAI's /v1/chat/completions endpoint. |
False
|
is_function_calling_model
|
bool
|
Set True if the model supports function calling messages, similar to OpenAI's function calling API. For example, converting 'Email Anya to see if she wants to get coffee next Friday' to a function call like |
False
|
model_name
|
str
|
The model's name used for logging, testing, and sanity checking. For some models this can be automatically discerned. For other models, like locally loaded models, this must be manually specified. |
'unknown'
|
system_role
|
MessageRole
|
The role this specific LLM providerexpects for system prompt. E.g. 'SYSTEM' for OpenAI, 'CHATBOT' for Cohere |
<MessageRole.SYSTEM: 'system'>
|
Source code in llama-index-core/llama_index/core/base/llms/types.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
|